Self-study session 2, Calculus

First year mathematics for the technology and science programmes Aalborg University

The purpose of this self-study session is to provide a perspective on some of the key concepts and approaches presented in E\&P Chapter 12. Feel free to use Matlab or Maple ${ }^{1}$ for symbolic computations.

Part I: Tangent plane and optimization

A function is for all $(x, y) \in \mathbb{R}^{2}$ defined by

$$
f(x, y)=4 x y^{2}+2 x^{2}+6 y^{2}+10
$$

The surface \mathcal{F} is the graph for $f(x, y)$. That is, \mathcal{F} is given by the equation $z=f(x, y)$.
a) Determine the equation for the tangent plane of the surface \mathcal{F} at the point $P(-1,2, f(-1,2))$.
b) Determine those points $(x, y, f(x, y))$ at which the tangent planes of \mathcal{F} are parallel with the $x y$-plane.
c) A region R is determined by $y \geq 0, x \leq 0$ and $y^{2} \leq x+6$. Sketch the region R.
d) Determine the maximal and minimal values of $f(x, y)$ in the region R.

Part II: Gradient vector, chain rule and implicitly defined functions

A function F is defined by

$$
F(x, y, z)=x^{2} \cos y+2 y \cos x+3 z-\sin z
$$

a) Determine the gradient vector ∇F to F at the point $P(0,0,0)$.
b) Determine the directional derivative to F at the point P in the direction given by the vector $\mathbf{v}=[2,2,-1]^{\top}$.
c) The funtion $f(x, y)$ is defined implicitly by $F(x, y, f(x, y))=0$. Determine $f(0,0), f_{x}(0,0)$ and $f_{y}(0,0)$.

[^0]
[^0]: ${ }^{1}$ Partial derivatives can easily be calculated symbolically in Matlab and Maple. As an example here is how to compute f_{x} for the function $f(x, y)=x^{2} y^{3}$:
 \gg syms x y
 $\gg f=x^{\wedge} 2 * y^{\wedge} 3$
 $\gg \operatorname{diff}(f, x)$
 In Maple use: $\operatorname{diff}\left(x^{\wedge} 2 * y^{\wedge} 3, x\right)$.

