Self-study session 1, Discrete mathematics

First year mathematics for the technology and science programmes
Aalborg University

In this self-study session we are working with time complexity. Space complexity will not
be considered. We will be using the math (CAS) software called Maple. Maple can be
downloaded from http://www.ekstranet.its.aau.dk/software Screencast 1 from http://
first.math.aau.dk/dan/software/maple/ explains (in Danish) how to install Maple on your
pc. Screencast 2 (og 3) shows how to use Maple in some examples (also in Danish).

Loops and complexity

Consider the following toy algorithm. You can copy it into Maple:

forfour:=proc(n::integer)
local i,j,k,1;
local a;
a:=0;
for i from 1 to n do
for j from 1 to n do
for k from 1 to n do
for 1 from 1 to n do
a:=a+l;
od;
od;
od;
od;
return a;
end proc;

You can now use the procedure forfour on an arbitraty integer input. For instance,
forfour(0)

returns 0, and

forfour(7)

returns 2401.

http://www.ekstranet.its.aau.dk/software
http://first.math.aau.dk/dan/software/maple/
http://first.math.aau.dk/dan/software/maple/

Exercise 1:
Consider the algorithm forfour.

e Prove that the worst-case complexity is O(n*).

e Prove that the average-case complexity is O(n*).

If you want to know how much time Maple uses on a given calculation, you can use the
command “time()”.

Exercise 2:

e Enter in Maple the command time(forfour(20)). Maple returns the time spent. Repeat this
computation until you have 10 executions. Then compute the average time spent.

o Do the same for time(forfour(40))
e Finally, do the same for time(forfour(80))

o Show that doubling the input causes the execution time to be multiplied by approximately 16 (e.g.
when you let the input grow as 20 — 40 — 80).

o Explain how this compares with the estimates of complexity.
We now modify the algorithm so that some part of it is not always executed.

forfourrand:=proc(n::integer)
local i,j,k,1,dice;
local a;
global b,c;
a:=0;
dice:=rand(1..10);
b:=dice();
c:=dice();
for i from 1 to n do
if not b=2 then
for j from 1 to n do
for k from 1 to n do
if not c=2 then
for 1 from 1 to n do
a:=at+l;
od;
else a:=7;
fi;
od;
od;
fi;
od;
return a;
end proc;

The line
dice:=rand(1..10);
defines a random number generator, returning integers in 1,2, ..., 10. The procedure calss

b:=dice();
c:=dice();

assigns random numbers between 1 and 10 to the variables b and c. We see that the algorithm
runs faster if b is assigned the value 2. It is also faster if b is assigned an another value, but ¢
is assigned the value 2.

Exercise 3:

o Determine the worst-case complexity of “forfourrand”.

o Determine the average-case complexity of “forfourrand”.

”

o Test your knowledge about complexity using the command “time()”.
Finally, we modify “forfour” in a different way:

forfourvild:=proc(n::integer)
local i,j,k,1;
local a;
a:=1;
for i from 1 to n do
for j from 1 to n do
for k from 1 to n do
for 1 from 1 to n do
a:=2%a;
od;
od;
od;
od;
return a;
end proc;

Exercise 4:
In this exercise we test the algorithm “forfourwild”. Computation of complexity does not make much
sense in this case, as we will see.

o Show that the computation of complexity in exercise 1 still holds.

e Perform tests as in exercise 2, but with much smaller inputs. Maybe you can stop Maple by
clicking the “stop”-button if necessary.

o Realize that complexity calculations (i.e., estimating number multiplications, addition, etc.) does
say how much time is used if numbers are very big. After all, it is faster to multiply 56 by 2 than
to multiply 2000009045 by 2.

You can refine the complexity calculations so that it counts binary operations rather than operations in
Z.. We will not do that in this self-study session.

Computation of determinant

In the remaining part og the self-study, we will work with determinants of n X n matrices

ain 412 0 Aip

a1 dxp - dgp
A =

a1 An2 - Ann

In the linear algebra course you have learned two ways to compute a determinant. In the
following, they are called Method 1 and Method 2. Metode 1: Let A be an n x n matrix.

e If n =1, then A = [a11] and we define det A = ay;.

e If n > 2, we define A;; to be the matrix obtained by deleting row i and column j from A.
(This is an (n — 1) x (n — 1) matrix). We have:

det A = (—1)"*1ay; det Ay + (—1)2appdet Ay + - + (= 1) "ay, det Ay, (1)

This method is also called cofactor expansion along the first row.

Exercise 5:

1 11 01 1
Use Method 1 to determine det (1 2 2) and to determine det (1 2 2)
1 2 3 1 2 3

If Method 1 is applied to a 2 x 2 matrix A (that is, n = 2), we obtain
det A = ayjaxn — a12a1. (2)
If Method 1 is applied to a 3 x 3 matrix A (that is, n = 3), we get
det A = ay1axa33 — a11a23032 — A12a21a33 + 412423431 + 413421432 — 413422031 3)
Exercise 6.

Verify that the above calculations (equations (2) and (3)) is a sum of n! terms, each being +/— a
product of n elements.

Theorem
For a general nn x n matrix A, Method 1 corresponds to computing a sum of n! terms, where
each term is +/— a product of n elements.

Exercise 7:

e Using the above theorem, show that Method 1 has worst-case complexity O((n!)n).
e Show that this implies that the worst case complexity is O((n + 1)!).
e Show that the worst case complexity of Method 1 is ©((n!)n).
Metode 2:
Bring A to reduced echelon form (not necessarily reduced) by means of Gaussian elimination
using only the following two elementary row operations
R1: “r; <> 1j” (for i # j). Interchange rows.

R2: “rj + crj — 1" (for i # j). Add a multiple of one row to another row.

Let s the number of operations of type R1. Let B be the row echelon form of A. Then:

det A = (—=1)°b11ba2 - - - byn. 4)

Exercise 8:
In this exercise, we estimate the complexity of Metode 2.

e Show that the worst-case complexity of the Gaussian elimination in Method 2 is O(n®).

o We can assume that the Gaussian elimination uses at most n row interchanges (operations of type
R1). Why?

e Having completed the Gaussian elimination, we can compute the right-hand side of (4). Show
that this computation uses at most O(n) operations.

e Show that the worst-case complexity of Method 2 is O(n®).

We now compare Method 1 and Method 2. We ignore the unknown constants hidden in
the expressions O((n!)n) and O(n®). More precisely, let us say that Method 1 uses (n!)n
operations and that Method 2 requires n® operations.

Exercise 9:
If a computer performs 1000000000 = 10° operations a second, then how long does it take to compute
the determinant of an n x n matrix using Methods 1 and 2 for each of the following values of n.

e n =207
o n =217
o n=22?

o Why does it make sense to ignore the constants in the expressions O((n!)n) and O(n3)?

5

Remark:
In the analysis of the complexities of Methods 1 and 2, we have merely considered the number

of multiplications and additions in R. We have ignored that the numbers during the computa-
tion can explode when a string of numbers are multiplied. If this was to be considered, things
become more involved. It is possible to show that Method 2 still has reasonable complexity,
whereas the complexity of Method 1 becomes even worse.

	Loops and complexity
	Computation of determinant

