
Miniproject 1:
Big-O notation and complexity of algorithms

In this miniproject we are working with time complexity. Space complexity will
not be considered. We will be using the math (CAS) software called Maple.

Maple can be downloaded from
http://www.software.aau.dk/MAPLE/Download+Maple/
Screencast 2 (and 3) from http://first.math.aau.dk/dan/software/maple/
explains (in Danish) how to use Maple in some examples.

Loops and complexity

Consider the following toy algorithm. You copy it into Maple.

forfour:=proc(n::integer)
local i,j,k,l;
local a;
a:=0;
for i from 1 to n do
for j from 1 to n do
for k from 1 to n do
for l from 1 to n do
a:=a+1;

od;
od;

od;
od;
return a;
end proc;

You can now use procedure forfour on an arbitrary integer input:

forfour(0)

returns 0, and

forfour(7)

returns 2401.

1



Exercise 1.
Consider the algorithm forfour.

• Prove that the worst-case complexity is O(n4).

• Prove that the average-case complexity is O(n4).

If you want to know how much time Maple uses on a given calculation, you can
use the command “time()”.

Exercise 2:

• Enter in Maple: time(forfour(20)). Maple then returns how time was used
on forfour(20). Repeat this computation until you have done it 10 times.
Then compute the average time used.

• Do the same for time(forfour(40))

• Finally do the same for time(forfour(80))

• Show that when you double the input then the execution time will be
multiplied by approximately 16. (i.e., when you let the input grow as:
20→ 40→ 80).

• Explain how this compares with the estimates of complexity.

We now modify the algorithm so that some part of it is not always executed.

forfourrand:=proc(n::integer)
local i,j,k,l,dice;
local a,b,c;
a:=0;
dice:=rand(1..10);
b:=dice();
c:=dice();
for i from 1 to n do
if not b=2 then
for j from 1 to n do
for k from 1 to n do
if not c=2 then
for l from 1 to n do
a:=a+1;

od;
else a:=7;

fi;
od;

od;
fi;

od;
return a;
end proc;

2



The line

dice:=rand(1..10);

defines a random number generator, returning integers in 1, 2, 3, . . . , 10.
The procedure calls

b:=dice();
c:=dice();

assigns random numbers between 1 and 10 to the variables b and c. We see
that the algorithm runs faster if b is assigned the value 2. It is also faster if b
is assigned an another value, but c is assigned the value 2.

Exercise 3:

• Determine the worst-case complexity of “forfourrand”.

• Determine the average-case complexity of “forfourrand”.

• Test our knowledge about complexity using the command “time()”.

Finally we modify “forfour” in another way:

forfourwild:=proc(n::integer)
local i,j,k,l;
local a;
a:=1;
for i from 1 to n do
for j from 1 to n do
for k from 1 to n do
for l from 1 to n do
a:=2*a;

od;
od;

od;
od;
return a;
end proc;

3



Exercise 4:
In this exercise we test the algorithm “forfourwild”. Computation of compexity
does not make much sense in this case, as we will see.

• Show that the computation of complexity in exercise 1 still holds.

• Perform tests as in exercise 2, but with much smaller input. Maybe you
can stop Maple by clicking the stop button, if necessary.

• Realize that complexity calculations (i.e., estimating number multiplica-
tions, addition, etc.) does say how much time is used if numbers are very
big. After all it is faster to multiply 56 by 2 than to multiply 2000009045
by 2.

You can refine the complexity calculations so that it counts binary operations
rather than operations in Z. We will not do that in this miniproject.

Computation of determinant

In the remaining part of this miniproject we will work with determinants of
n× n matrices

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

In the linear algebra course you have learned two ways to compute a determi-
nant. In the following they are called Method 1 and Method 2.

Method 1: Let A be an n× n matrix.

• If n = 1, then A = [a11] we define detA = a11.

• If n ≥ 2, then we define Aij to be the matrix, obtained by deleting row i
and row j from A. (This is an (n− 1)× (n− 1) matrix). We have that:

detA = (−1)1+1a11 detA11 + (−1)1+2a12 detA12 + · · · (1)
+(−1)1+na1n detA1n. (2)

This method is also called cofactor expansion along the first row.

Exercise 5:

Use Method to determine det

( 1 1 1
1 2 2
1 2 3

) and to determine det

( 0 1 1
1 2 2
1 2 3

)

If Method 1 is applied on a 2× 2 matrix A (i.e., n = 2), we get

detA = a11a22 − a12a21. (3)

4



If Method 1 is used on a 3× 3 matrix A (i.e., n = 3), then we get

detA = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.
(4)

Exercise 6: Verify that the above calculations (formulas (3) and (4) is a sum
of n! terms, and each term is +/− a product of n elements.

Theorem
For a general n× n matrix A Method 1 corresponds to computing a sum of n!
term, where each term is +/− a product of n elements.

Exercise 7:

• Using the above theorem, show that Method 1 has worst-case complexity
O
(
(n!)n

)
.

• Show that this means that the worst-case complexity is O
(
(n + 1)!

)
.

• Show that the worst-case complexity of Method 1 is Θ
(
(n!)n

)
.

Method 2:
Transform A into a row echelon form (not necessarily reduced) (Gaussian elim-
ination) using only the following two elementary row operations:

R1: “ri ↔ rj” (for i 6= j). Interchange rows.

R2: “ri + crj → ri" (for i 6= j). Add a multiple of one row to another row.

Let s the number of operations of type R1. Let B be the row echelon form
of A. Then:

detA = (−1)sb11b22 · · · bnn. (5)

Exercise 8:
In this exercise we estimate the complexity of Method 2.

• Show that the worst-case complexity of the Gaussian elimination in Method 2
is O(n3).

• We can assume that the Gaussian elimination uses at most n row inter-
changes (operations of type R1). Why?

• When Gaussian elimination is finished we can compute the right-hand side
of (5). Show that this calculation uses at most O(n) operations.

• Show that the worst-case complexity of Method 2 is O(n3).

5



We now compare Method 1 and Method 2. We ignore the unknown constants
hidden in the expressions O

(
(n!)n

)
and O(n3). More precisely, let us say that

Method 1 uses (n!)n operations and that Method 2 uses n3 operations.

Exercise 9:
If a computer performs 1000000000 = 109 operations in one second. Then how
much time is used to compute the determinant of an n×n matrix using Method
1 and Method 2 for each the following values of n:

• n = 20?

• n = 21?

• n = 22?

• Why does it make sense to ignore the constants in the expressions O
(
(n!)n

)
and O(n3)?

6


