Exam in Linear Algebra

First Year at The Faculty of IT and Design and at the Faculty of Engineering and Science

15 June 2020 9:00-13:00

Full marks are given if all the correct and no wrong answers are checked. A wrong answer cancels a correct answer in the same question.

At the exam, Moodle chose one of the problems $1 A$ and $1 B$ at random for each student.

Problem 1A (6 points)

Consider the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =2 \\
2 x_{1}+x_{3} & =1 \\
-x_{1}+2 x_{2} & =1
\end{aligned}
$$

(a) Mark the true statement(s):
\square The system has no solutions
$\square x_{1}=x_{2}=1$ and $x_{3}=-1$ is a solution to the system
$\square x_{1}=-1, x_{2}=0$ and $x_{3}=3$ is a solution to the system
\square The system has exactly two solutions
\square The system has infinitely many solutions
\square The system has exactly one solution

Problem 1B (6 points)

Consider the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =2 \\
2 x_{1}+x_{3} & =1 \\
x_{1}+2 x_{2} & =1
\end{aligned}
$$

(a) Mark the true statement(s):
\square The system has no solutions$x_{1}=x_{2}=1$ and $x_{3}=-1$ is a solution to the system$x_{1}=-1, x_{2}=0$ and $x_{3}=3$ is a solution to the systemThe system has exactly two solutionsThe system has infinitely many solutionsThe system has exactly one solution

Problem 2 (5 points)

The figures below show two vectors \mathbf{u}_{1} and \mathbf{u}_{2} in \mathbb{R}^{2}.
(a) Mark the figure where $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ can be the result of applying Gram-Schmidt (with normalization) to a basis of \mathbb{R}^{2}.

\square

\square

Problem 3 (10 point)

The characteristic polynomial of the matrix

$$
A=\left[\begin{array}{rrr}
7 & -5 & 5 \\
-6 & 0 & 6 \\
4 & -2 & 8
\end{array}\right]
$$

is $-(t-12)(t-6)(t+3)$.
(a) (2 points). Among the following numbers, the eigenvalue(s) of A is/are?
$\square-9$
$\square-6$0
3
(b) (2 points). Among the following vectors, the eigenvector(s) of A is/are?
$\square\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
$\square\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
$\square\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
(c) (1 point). Is A invertible?
Yes No

Neither yes nor no
(d) (1 point). Is A diagonalizable?
\square YesNo
Neither yes nor no
(e) (2 points). How many, not necessarily linearly independent, eigenvectors does A have?2
3
Infinitely many
(f) (2 points). If $E=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$, then $E A$:
$\square\left[\begin{array}{rrr}7 & -5 & 5 \\ -10 & 2 & -2 \\ 4 & -2 & 8\end{array}\right]$
$\square\left[\begin{array}{rrr}7 & -5 & 5 \\ -6 & 0 & 6 \\ -2 & -2 & 14\end{array}\right]$
$\square\left[\begin{array}{rrr}7 & -5 & 5 \\ -6 & 0 & 6 \\ 10 & -2 & 2\end{array}\right]$
$\square\left[\begin{array}{rrr}11 & -7 & 13 \\ -6 & 0 & 6 \\ 4 & -2 & 8\end{array}\right]$

Problem 4 (12 points)

Let $T: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}$ be a linear transformation with standard matrix

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 4 \\
3 & 5 & 7 \\
0 & 1 & 1
\end{array}\right] .
$$

(a) (1 point). What is n ?
2
$\square$$\square 5$
6
(b) (1 point). What is m ?
2
3
4
56
(c) (2 points). What is the $\operatorname{rank} \operatorname{Rank}(A)$?
0
1 234
(d) (2 points). What is the nullity Nullity (A) ?2 3
(e) (2 points). Is T injective (óne-to-óne) and/or surjective (onto)?
\square Injective, but not surjective Surjective, but not injective
\square Injective and surjectiveNeither injective nor surjective
(f) (2 points). The vector $a=\left[\begin{array}{c}3 \\ -2 \\ 4\end{array}\right]$ is in:
\square The column space $\operatorname{Col}(A)$
\square The null space $\operatorname{Null}(A)$
\square None of the above
(g) (2 points). The vector $b=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ is in:The column space $\operatorname{Col}(A)$The null space $\operatorname{Null}(A)$None of the above

Problem 5 (4 points)

A is an $n \times 3$-matrix, B is an $m \times 5$-matrix, and $C=A B$ is a $p \times p$-matrix.
(a) What are the values of m, n and p ?$m=n=p=3$
$\square m=n=p=5$
$\square m=n=5, p=3$
$\square m=3, n=5, p=4$
\square
None of the previous

Problem 6 (5 points)

The figures below each show a vector \mathbf{v} and its image under a linear map T. Note that the map T is not the same in every figure.
(a) Among the figures, the one(s) where \mathbf{v} is an eigenvector of T is/are?
\square

\square

\square

Problem 7 (10 point)

Let $A=\left[\begin{array}{lll}1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]$.
(a) (5 points). What is $A \mathbf{v}$?
$\square\left[\begin{array}{c}16 \\ 2 \\ 5\end{array}\right]$
$\square\left[\begin{array}{c}-16 \\ 2 \\ -5\end{array}\right]$
$\square\left[\begin{array}{c}-16 \\ -18 \\ 5\end{array}\right]$

None of the previous
(b) (5 points). What is the inverse of A ?
$\square\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1\end{array}\right]$
$\square\left[\begin{array}{ccc}-24 & 20 & -5 \\ 18 & -15 & 4 \\ 5 & -4 & 1\end{array}\right]$
$\square\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$
$\square\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1\end{array}\right]$
$\square\left[\begin{array}{lll}1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0\end{array}\right]$
$\square\left[\begin{array}{ccc}-24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1\end{array}\right]$

Problem 8 (6 points)

Let $\mathbf{v}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right], W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\mathbf{u}=\left[\begin{array}{l}6 \\ 6 \\ 6\end{array}\right]$.
(a) (3 points). Are \mathbf{v}_{1} and \mathbf{v}_{2} orthogonal?
Yes
No
Neither yes nor no
(b) (3 points). What is the orthogonal projection of \mathbf{u} onto W ?
$\square\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]$
$\square\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$
$\square\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$
$\square\left[\begin{array}{l}2 \\ 2 \\ 8\end{array}\right]$
$\square\left[\begin{array}{l}7 \\ 7 \\ 4\end{array}\right]$
$\square\left[\begin{array}{c}-7 \\ 7 \\ 4\end{array}\right]$
$\square\left[\begin{array}{c}4 \\ 4 \\ 16\end{array}\right]$
$\square\left[\begin{array}{c}-2 \\ 2 \\ 8\end{array}\right]$

Problem 9 (2 points)

Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $\mathbf{u}_{3}=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$. Mark those vectors below that are in $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
$\square\left[\begin{array}{l}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$

Problem 10 (10 point)

Two matrices are given by

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
1 & 1
\end{array}\right] .
$$

By matrix multiplication, the matrix $C=A B$ is obtained.
(a) (3 points). What is the size of C ?
$\square 2 \times 3$
$\square 3 \times 3$$2 \times 4$
$\square 3 \times 2$$4 \times 3$
(b) (3 points). What is entry c_{31} ?
$\square-3$
0
4
$\square-1$
(c) (4 points). Which of the following products exist?
$\square A B$
$\square A^{T} B$$B^{T} A$
$\square A^{T} B^{T}$
$\square B A$
$\square B A^{T}$
$\square A B^{T}$
$\square B^{T} A^{T}$

Problem 11 (10 point)

Let A and B be 3×3-matrices with determinants $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=0$, respectively.
(a) (2 points). What is $\operatorname{det}(-A)$?
2
-2
\square $-4$40
Not defined
(b) (2 points). What is $\operatorname{det}\left(A B^{-1}\right)$?
2
$\square-2$
$\square-4$4
0Not defined
(c) (2 points). What is $\operatorname{det}\left(-B^{2}\right)$?
2
-2
\square -4 \square 4
0Not defined
(d) (2 points). What is $\operatorname{det}\left(B^{T}\right)$?
$\square 2$
$\square-2$
$\square-4$4
0
Not defined
(e) (2 points). What is $\operatorname{det}\left(\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 1 & 5\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right)$?
$\square 2$$-2$$-4$
4
0

Problem 12 (4 points)

A system of equations is given by

$$
\begin{aligned}
x_{1}+2 x_{2}+c x_{3} & =4 \\
x_{1}+x_{2}-2 x_{3}-x_{4} & =-2
\end{aligned}
$$

where c is a real constant. Mark the true statement(s) below.
$\square x_{1}=-8, x_{2}=6, x_{3}=0, x_{4}=0$ is a solution regardless of the value of c.
\square The system is consistent and has two free variables regardless of the value of c.
\square The system is inconsistent regardless of the value of c.
\square Whether the system is consistent or not depends on the value of c.
\square If $c=3$, then the system has exactly one solution, namely $x_{1}=-8, x_{2}=6$, $x_{3}=0, x_{4}=0$.

Problem 13 (10 point)

The matrix A is row-reduced to the matrix R, where

$$
R=\left[\begin{array}{llllll}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and $A=\left[\begin{array}{llllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} & \mathbf{a}_{6}\end{array}\right]$ where \mathbf{a}_{i} is the i th column in A.
(a) (2 points). Which of the following statements is correct?
$\square\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ is linearly independent
$\square\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{6}\right\}$ is linearly dependent.
$\square \mathbf{a}_{5}=\mathbf{a}_{1}+2 \mathbf{a}_{4}$
$\square \mathbf{a}_{5}=-\mathbf{a}_{1}-2 \mathbf{a}_{4}$
$\square \mathbf{a}_{6}$ is a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$
(b) (2 points). What is the nullity Nullity (A) ?
$\square 0$6$\square 4$
5
\square That cannot be de- termined with the given information.
(c) (2 points). What is the rank $\operatorname{Rank}(A)$?
$\square 0$3 614
2
5
That cannot be determined with the given information.
(d) (2 points). If A is the augmented matrix for a system of linear equations in $x_{1}, x_{2}, \ldots, x_{5}$, does the system have a solution?Yes
No
(e) (2 points). Which columns in A are pivot columns?2 and 5$2,3,4$, and 5No columns
$\square 5$ and 6$1,3,4$, and 6All columns

Problem 14 (6 points)

In MATLAB's Command Window, the following is given as input:

```
>> u = [1; 0; 1; 0];
>> v = [1; 2; 2; 1];
>> w = [1; 2; 3; 4];
>> z = [1; 3; 2; 6];
>> T = [u v w z];
>> rref(T)
    ans =
\begin{tabular}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
```

If T is the augmented matrix for a system of linear equations $A \mathbf{x}=\mathbf{b}$, which of the following statements is then correct?
The system has a unique solution: $\mathbf{x}=\mathbf{0}$.
\square The system has no solutions
\square The system may have no solutions, or it may have infinitely many; it depends on the value of \mathbf{b}

