Exam in Linear Algebra

First Year at The Faculty of IT and Design and at the Faculty of Engineering and Science

15 June 2020 9:00-13:00

Full marks are given if all the correct and no wrong answers are checked. A wrong answer cancels a correct answer in the same question.

At the exam, Moodle chose one of the problems 1A and 1B at random for each student.

Problem 1A (6 points)

Consider the system of equations

$$x_1 + 2x_2 + x_3 = 2$$
$$2x_1 + x_3 = 1$$
$$-x_1 + 2x_2 = 1$$

(a) Mark the true statemen			
	2+1	~ '	١.
tar iviaik lije lijue statelijei	ILL	5	J.

☐ The system has no solutions

☐ The system has exactly two solutions

 $\hfill \square$ The system has infinitely many solutions

☐ The system has exactly one solution

Problem 1B (6 points)

Consider the system of equations

$$x_1 + 2x_2 + x_3 = 2$$
$$2x_1 + x_3 = 1$$
$$x_1 + 2x_2 = 1$$

(a)	Mark	the	true	statement	(s))
-----	------	-----	------	-----------	-----	---

 $\hfill \square$ The system has no solutions

 $x_1 = -1$, $x_2 = 0$ and $x_3 = 3$ is a solution to the system

☐ The system has exactly two solutions

☐ The system has infinitely many solutions

☐ The system has exactly one solution

Problem 2 (5 points)

The figures below show two vectors \textbf{u}_1 and \textbf{u}_2 in $\mathbb{R}^2.$

(a) Mark the figure where $\{\mathbf{u}_1,\mathbf{u}_2\}$ can be the result of applying Gram-Schmidt (with normalization) to a basis of \mathbb{R}^2 .

Problem 3 (10 point)

The characteristic polynomial of the matrix

$$A = \left[\begin{array}{rrr} 7 & -5 & 5 \\ -6 & 0 & 6 \\ 4 & -2 & 8 \end{array} \right]$$

is
$$-(t-12)(t-6)(t+3)$$
.

- (a) (2 points). Among the following numbers, the eigenvalue(s) of A is/are?
- \square -9 \square -6 \square -3 \square 0
- $\prod 3$
- $\prod 6$
- (b) (2 points). Among the following vectors, the eigenvector(s) of A is/are?

- (c) (1 point). Is *A* invertible?
 - ☐ Yes

 \prod No

☐ Neither yes nor no

- (d) (1 point). Is A diagonalizable?
 - ☐ Yes

□ No

- ☐ Neither yes nor no
- (e) (2 points). How many, not necessarily linearly independent, eigenvectors does A have?
 - $\prod 0$
- $\prod 1$
- $\prod 2$
- ☐ 3
- ☐ Infinitely many

- (f) (2 points). If $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$, then EA:
 - $\begin{bmatrix}
 7 & -5 & 5 \\
 -10 & 2 & -2 \\
 4 & -2 & 8
 \end{bmatrix}
 \qquad
 \begin{bmatrix}
 7 & -5 & 5 \\
 -6 & 0 & 6 \\
 -2 & -2 & 14
 \end{bmatrix}$
 - $\begin{bmatrix}
 7 & -5 & 5 \\
 -6 & 0 & 6 \\
 10 & -2 & 2
 \end{bmatrix}$
- $\begin{bmatrix}
 11 & -7 & 13 \\
 -6 & 0 & 6 \\
 4 & -2 & 8
 \end{bmatrix}$

Problem 4 (12 points)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 4 \\ 3 & 5 & 7 \\ 0 & 1 & 1 \end{bmatrix}.$$

(a) (1 point). What is n?

 \square 2

□ 3

 $\prod 4$

 $\prod 5$

 \Box 6

(b) (1 point). What is m?

 $\prod 2$

□ 3

 $\prod 4$

 $\prod 5$

∏ 6

(c) (2 points). What is the rank Rank(A)?

 \Box 0

 $\prod 1$

 \square 2

 \square 3

 \Box 4

(d) (2 points). What is the nullity Nullity(A)?

 \Box 0

 $\prod 1$

□ 2

 \square 3

 \Box 4

(e) (2 points). Is *T* injective (óne-to-óne) and/or surjective (onto)?

☐ Injective, but not surjective

Surjective, but not injective

☐ Injective and surjective

Neither injective nor surjective

(f) (2 points). The vector $a = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ is in:

 \sqcap The column space Col(A)

 \square The null space Null(A)

☐ None of the above

(g) (2 points). The vector $b = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ is in:

 \square The column space Col(A)

 \square The null space Null(A)

☐ None of the above

Problem 5 (4 points)

A is an $n \times 3$ -matrix, *B* is an $m \times 5$ -matrix, and C = AB is a $p \times p$ -matrix.

(a) What are the values of m, n and p?

$$\prod m = n = p = 3$$

$$m = n = 5, p = 3$$

 $m = 3, n = 5, p = 4$

None of the previous

Problem 6 (5 points)

The figures below each show a vector \mathbf{v} and its image under a linear map T. Note that the map *T* is *not* the same in every figure.

(a) Among the figures, the one(s) where \mathbf{v} is an eigenvector of T is/are?

Problem 7 (10 point)

Let
$$A = \begin{bmatrix} 1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$.

(a) (5 points). What is $A\mathbf{v}$?

- $\begin{bmatrix}
 16 \\
 2 \\
 5
 \end{bmatrix}
 \begin{bmatrix}
 -16 \\
 2 \\
 -5
 \end{bmatrix}
 \begin{bmatrix}
 -16 \\
 -18 \\
 5
 \end{bmatrix}
 None of the previous$

(b) (5 points). What is the inverse of *A*?

- $\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & -\frac{1}{2} \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 -24 & 20 & -5 \\
 18 & -15 & 4 \\
 5 & -4 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 2 & 3 \\
 0 & 1 & 4 \\
 5 & 6 & 0
 \end{bmatrix}$

- $\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & \frac{1}{2} & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 5 \\
 2 & 1 & 6 \\
 3 & 4 & 0
 \end{bmatrix}
 \begin{bmatrix}
 -24 & 18 & 5 \\
 20 & -15 & -4 \\
 -5 & 4 & 1
 \end{bmatrix}$

Problem 8 (6 points)

Let
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, $W = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathbf{u} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$.

(a) (3 points). Are \mathbf{v}_1 and \mathbf{v}_2 orthogonal?

☐ Yes

□ No

☐ Neither yes nor no

(b) (3 points). What is the orthogonal projection of **u** onto *W*?

Problem 9 (2 points)

Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$. Mark those vectors below that are in Span{ u_1, u_2, u_3 }.

Problem 10 (10 point)

Two matrices are given by

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

By matrix multiplication, the matrix C = AB is obtained.

- (a) (3 points). What is the size of C?
 - $\prod 2 \times 3$
- $\prod 3 \times 3$

 $\prod 2 \times 4$

 $\prod 3 \times 2$

 $\prod 4 \times 3$

 $\prod 4 \times 2$

- (b) (3 points). What is entry c_{31} ?
 - \Box -3

 $\prod 4$

 $\prod -1$

 $\prod 1$

- $\prod 3$
- (c) (4 points). Which of the following products exist?
 - \Box AB

- $\sqcap BA$

Problem 11 (10 point)

Let A and B be 3×3 -matrices with determinants det(A) = 2 and det(B) = 0, respectively.

- (a) (2 points). What is det(-A)?
 - \Box -2 \Box -4
- $\prod 4$
- $\prod 0$
- ☐ Not defined

- (b) (2 points). What is $det(AB^{-1})$?
 - 2
- \Box -2 \Box -4
- $\prod 4$
- $\prod 0$
- ☐ Not defined

- (c) (2 points). What is $det(-B^2)$?
 - $\prod 2$
- \bigcap -2 \bigcap -4
- $\prod 4$
- $\prod 0$
- ☐ Not defined

- (d) (2 points). What is $det(B^T)$?
 - $\prod 2$
- \Box -2 \Box -4
- $\prod 4$
- $\prod 0$
- ☐ Not defined

- (e) (2 points). What is $\det \left(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right)$?
 - $\prod 2$
- - \Box -2 \Box -4
- $\prod 4$
- $\prod 0$
- ☐ Not defined

Problem 12 (4 points)

A system of equations is given by

$$x_1 + 2x_2 + cx_3 = 4$$
$$x_1 + x_2 - 2x_3 - x_4 = -2$$

where *c* is a real constant. Mark the true statement(s) below.

- ☐ The system is consistent and has two free variables regardless of the value of
- \square The system is inconsistent regardless of the value of c.
- \square Whether the system is consistent or not depends on the value of c.
- \Box If c=3, then the system has exactly one solution, namely $x_1=-8$, $x_2=6$, $x_3 = 0, x_4 = 0.$

Problem 13 (10 point)

The matrix A is row-reduced to the matrix R, where

$$R = \left[\begin{array}{cccccc} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right],$$

and $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5 \ \mathbf{a}_6]$ where \mathbf{a}_i is the *i*th column in A.

(a)	(2 points). Which of the following statements is correct?							
	$\begin{bmatrix} \{a_1, a_2, a_3, a_4\} \text{ is linea} \\ \{a_1, a_3, a_4, a_6\} \text{ is linea} \\ a_5 = a_1 + 2a_4 \\ a_5 = -a_1 - 2a_4 \\ a_6 \text{ is a linear combina} \end{bmatrix}$	rly dependent.						
(b)	(2 points). What is the nu	ullity Nullity (A) ?						
	<u> </u>	□ 3		6				
	<u> </u>	□ 4		That cannot be de-				
	□ 2	<u>5</u>		termined with the given information.				
(c)	(2 points). What is the ra	$\operatorname{ank}(A)$?						
	<u> </u>	□ 3		6				
	<u> </u>	☐ 4		That cannot be de-				
	□ 2	<u>5</u>		termined with the given information.				
(d)	(2 points). If A is the aug x_1, x_2, \ldots, x_5 , does the sy		em (of linear equations in				
	Yes	□ No						
(e)	(2 points). Which column	ns in A are pivot columns	s?					
	☐ 2 and 5	2, 3, 4, and 5		No columns				
	☐ 5 and 6	\prod 1, 3, 4, and 6	П	All columns				

Problem 14 (6 points)

In MATLAB's Command Window, the following is given as input:

```
>> u = [1; 0; 1; 0];
>> v = [1; 2; 2; 1];
>> w = [1; 2; 3; 4];
>> z = [1; 3; 2; 6];
>> T = [u v w z];
>> rref(T)
ans =

1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1
```

If *T* is the augmented matrix for a system of linear equations A**x** = **b**, which of the following statements is then correct?

- \square The system has a unique solution: x = 0.
- ☐ The system has no solutions
- ☐ The system may have no solutions, or it may have infinitely many; it depends on the value of **b**