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Problem 1 & 2

NB: All page numbers refer to the book compiled by O. Geil, "Elementary
Linear Algebra".

Problem 1)

a) By the De�nition of the matrix product on page 97, the product AB of a
(3× 4) matrix A with a (4× 2) matrix B gives a (3× 2) matrix.

b) By the same de�nition it follows that the c12 entry stems from the dot
product of the second column of B with the �rst row vector of A, that is:
c12 = (3 · 2) + (0 · 3) + (1 · −1) + (−1 · 0) = 5

Problem 2)

a) Apply cofactor expansion (theorem 3.1 on page 203) over for instance the
last column of the matrix. Then its determinant is found as:

c · det
[

3 1
−8 −1

]
− 0+ 3 · det

[
1 2
3 1

]
=c((3 · −1)− (−8 · 1)) + 3((1 · 1)− (3 · 2))
=5c − 15 = −10

b) A square matrix is not invertible when its determinant is equal to 0
(Theorem 3.4 on page 214). From the result above we see that the
determinant equals 5c − 15, which is equal to 0 for c = 3.



Problem 3

See the rules of theorem 3.3 on page 212,

thereby,

a) det(C ) = 3 · det(A) = 6

b) det(B4) = (det B)4 = (−3)4 = 81

c) det(AB−1A−1) = det(A) det(B−1) det(A−1) =
(det A)( 1

det B
)( 1

det A
) = ( 1

det B
) = − 1

3



Problem 4

Put the system in augmented matrix form, and bring this in reduced
echelon form (see "Procedure for Solving a System of Linear Equations"
the blue box on page 37): 1 4 −1 1

3 1 −1 8
2 2 5 −13

 r2=r2−3r1−→
r3=r3−2r1

 1 4 −1 1
0 −11 2 5
0 −6 7 −15

 r2=6r2−11r3−→

 1 4 −1 1
0 0 −65 195
0 −6 7 −15

 r2=−r2/65−→

 1 4 −1 1
0 0 1 −3
0 −6 7 −15

 r3=r3−7r2−→

 1 4 −1 1
0 0 1 −3
0 −6 0 6

 r3=−r3/6−→

 1 4 −1 1
0 0 1 −3
0 1 0 −1

 r2=r3−→
r3=r2 1 4 −1 1

0 1 0 −1
0 0 1 −3

 r1=r1−4r2+r3−→

 1 0 0 2
0 1 0 −1
0 0 1 −3


Unique solution x1 = 2, x2 = −1, x3 = −3.



Problem 5

Put the system in augmented matrix form, and bring it in reduced
echelon form (see "Procedure for Solving a System of Linear Equations"
the blue box on page 37): 1 −1 2 1

1 3 r 2
3 2 1 8

 r2=r2−r1−→
r3=r3−3r1

 1 −1 2 1
0 4 r − 2 1
0 5 −5 5

 r2=r3/5−→
r3=r2 1 −1 2 1

0 1 −1 1
0 4 r − 2 1

 r1=r1+r3−→
r3=r3−4r2

 1 0 1 2
0 1 −1 1
0 0 r + 2 −3


From the �nal matrix we observe that the system is inconsistent for
r = −2 as in that case we have a zero row on the left of the vertical
augmentation line while a nonzero entry on the right.

Note: For r = −2 the �nal matrix is in reduced echelon form; while for r 6= −2 we
should divide the third row by r + 2, and perform r2 = r2 + r3 and r1 = r1 − r3 to get
the matrix in reduced echelon form.



Problem 6

a) The standard matrix of S is (theorem 2.9 on page 174):

[S(e1) S(e2)] =

[
1 −2
3 2

]
b) Composite transformation ST : R2 → R

2 states �rst apply T and then S .
By theorem 2.12 on page 186 the standard matrix of ST is found as the
matrix product ASAT with AT the standard matrix of T and AS the
standard matrix of S .

The standard matrix of T is [T (e1) T (e2)] =

[
5 4
1 1

]
and thereby

ASAT =

[
1 −2
3 2

] [
5 4
1 1

]
=

[
3 2
17 14

]
c) The standard matrix of the inverse transform of T equals the inverse of

standard matrix of T (see theorem 2.13 on page 187). For an invertible

2× 2 matrix

[
a b

c d

]
its inverse is 1

ad−bc

[
d −b
−c a

]
(see the boxed result

on page 200) so the inverse of the standard matrix

[
5 4
1 1

]
of T is:

[
1 −4
−1 5

]



Problem 7

The eigenvalues of a square matrix A are the values of λ that satisfy
det(A− λIn) = 0, see the boxed result on page 302.

Hence we �nd the eigenvalues of the matrix by that:

det(

[
1 4
−1 5

]
− λI2) = det(

[
1− λ 4
−1 5− λ

]
)

= (1− λ)(5− λ)− (−1 · 4)

= λ2 − 6λ+ 9

= (λ− 3)2,

which is zero for λ = 3 with multiplicity 2 (for the de�nition of multiplicity see
page 305).



Problem 8

a) A straightforward strategy is to calculate Av1,Av2,Av3,Av4 and Av5 and
to notice that Av1 = 3v1, Av4 = 3v4, Av5 = 3v5, while Av2 and Av3 are
not �xed multiples of respectively, v2 and v3. So v1, v4 and v5 are
eigenvectors while v2 and v3 are not.

b) From the characteristic polynomial (see page 302 for the de�nition and
its signi�cance) of A it is immediately clear that is only real eigenvalue is
λ = 3.

c) From the characteristic polynomial we notice that there are complex
eigenvalues, therefore the matrix is not diagonalizable (see the blue box
on page 319, "Test for a Diagonalizable Matrix ...")



Problem 9

Start from the de�nition of the matrix representation of T with respect
to β om page 277, then,

[T ]β =
[
[T (b1)]β [T (b2)]β [T (b3)]β

]
=
[
B
−1
T (b1) B

−1
T (b2) B

−1
T (b3)

]
= B

−1
[
T (b1) T (b2) T (b3)

]
with

B = [b1 b2 b3] =

 1 1 2
−1 0 −2
−2 −2 −3


while we obtain T (b1),T (b2),T (b3) from the transformation rule

T

x1x2
x3

 =

x1 + x2

x1 − x3

2x1

 =⇒ T (b1) =

03
2

 ;T (b2) =

13
2

 ;T (b3) =

15
4


Now we can compute B−1

[
T (b1) T (b2) T (b3)

]
for instance by applying

the algorithm for computing A
−1
B stated on page 139, that is ...



Problem 9

... we augment B with the matrix [T (b1) T (b2) T (b3)] to get

[B |T (b1) T (b2) T (b3)]

and bring it by Gausssian elimination steps into the form[
I3|B−1 [T (b1) T (b2) T (b3)]

]
.

as shown below:

[B |T (b1) T (b2) T (b3)] =

 1 1 2 0 1 0
−1 0 −2 3 3 5
−2 −2 −3 2 2 4

 r2=r2+r1−→
r3=r3+2r2 1 1 2 0 1 0

0 1 0 3 4 5
0 0 1 2 4 4

r1=r1−r2+2r3−→

 1 0 0 −7 −11 −13
0 1 0 3 4 5
0 0 1 2 4 4

=[I3 | [T ]β
]



Problem 10

By the Gram�Scmidt procedure (Theorem 6.6 on page 378) an orthogonal
basis {v1, v2, v3} is found as

v1 = u1 = [1 0−1 0]T

v2 = u2 −
u2 · v1
v1 · v1

v1

= u2 −
(1 · 1) + (1 · 0) + (−3 · −1) + (1 · 0)
(1 · 1) + (0 · 0) + (−1 · −1) + (0 · 0)v1

=


1
1
−3
1

− 2


1
0
−1
0

 =


−1
1
−1
1


v3 = u3 −

u3 · v1
v1 · v1

v1 −
u3 · v2
v2 · v2

v2

= u3 −
−8
2
v1 −

−8
4

v2 = u3 + 4v1 + 2v2

=


0
−1
8
1

+ 4


1
0
−1
0

+ 2


−1
1
−1
1

 =


2
1
2
3





Problem 11

a) Notice that {v1, v2} is an orthonormal basis for W as ||v1|| = ||v2|| = 1
and v1 · v2 = 0. Then by Theorem 6.7 on page 392 we �nd the
orthogonal projection w of u on W as

w = (u · v1)v1 + (u · v2)v2

= 3v1 + 3v2 =


2
2
3
1


b) The distance from u to W is ||z|| (see Theorem 6.7 as well as the blue

box on page 397)

z = u− w =


4
1
3
−1

−

2
2
3
1

 =


2
−1
0
−2

 ; ||z|| =
√
22 + (−1)2 + 02 + (−2)2 = 3

c) For any subspace W of Rn: dim W + dim W
⊥ = n (see boxed result on

page 393). So here: dimW⊥ = 4− 2 = 2



Problem 12

It is stated that v1, v2 and v3 are in R
3 and that:

(1) {v1, v2} is linearly independent,

(2) {v1, v2, v3} is not
which implies that v3 is a linear combination of v1 and v2, which equivalently
can be stated as that v3 is in the span of {v1, v2}. So a basis for W is given by
{v1, v2} and thereby dim W = 2 and the subspace of W can be described as a
2- dimensional plane through the origin of R3.

Observe that A is a square 3× 3 matrix. Now (1) and (2) immediately imply
that rank A is 2 (as rank A is the number of linear independent colums in A),
which is not equal to the number of columns (i.e. A has not a full rank) and
therefore A is not invertible and equivalently has a determinant equal to zero
(see theorem 2.6 on page 138).

Hence from the given statements the only statement that is correct, is that
det(A) = 0.



Problem 13

a) - {v1, v2} is not linear independent as v2 = 3v1
- {v1, v3} is linear independent as v3 is not a �xed multiple of v1
- {v1} is linear independent (see the de�nition of linear independence
on page 75/76)

- {v1, v3, v4, v5} can not be linear independent as each vi ∈ R
3, so

only a maximum number of 3 of those vectors can be linear
independent (see theorem 4.6 page 246)

- {v1, v2, v3, v4, v5} can not be linear independent for the same reason
as stated immediately above

- to check if {v1, v3, v4} is linear independent we put these vectors as

column vectors in a matrix and �nd its reduced echelon form. This

turns out to be the the identity matrix, so {v1, v2, v3} is linear

independent

b) To span R
3, the set needs to contain 3 or more vectors of which 3 are

linear independent (see e.g. the boxed result on page 244). {v1, v2, v3}
and {v1, v2, v4} do not contain 3 linear independent vectors as v2 = 3v1,
while {v1, v3, v4} does contain 3 linear independent vectors as we have
veri�ed in (a). So of the given sets the only set that spans R3 is
{v1, v3, v4}



Problem 14

With t = π/4 and A =

[
cos t − sin t
sin t cos t

]
then

A =

[
1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

]

Hence with v =

[
1
1

]

AAv =

[
1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

] [
1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

] [
1
1

]
=

[
1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

] [
0√
2

]
=

[
−1
1

]


