Exam Linear Algebra: 14 January 2019

Full solutions

First Year Math Team
Department of Mathematics Aalborg University (AAU)

Problem 1 \& 2

NB: All page numbers refer to the book compiled by O. Geil, "Elementary Linear Algebra".

Problem 1)

a) By the Definition of the matrix product on page 97 , the product $A B$ of a (3×4) matrix A with a (4×2) matrix B gives a (3×2) matrix.
b) By the same definition it follows that the c_{12} entry stems from the dot product of the second column of B with the first row vector of A, that is: $c_{12}=(3 \cdot 2)+(0 \cdot 3)+(1 \cdot-1)+(-1 \cdot 0)=5$
Problem 2)
a) Apply cofactor expansion (theorem 3.1 on page 203) over for instance the last column of the matrix. Then its determinant is found as:

$$
\begin{aligned}
& c \cdot \operatorname{det}\left[\begin{array}{rr}
3 & 1 \\
-8 & -1
\end{array}\right]-0+3 \cdot \operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right] \\
= & c((3 \cdot-1)-(-8 \cdot 1))+3((1 \cdot 1)-(3 \cdot 2)) \\
= & 5 c-15=-10
\end{aligned}
$$

b) A square matrix is not invertible when its determinant is equal to 0 (Theorem 3.4 on page 214). From the result above we see that the determinant equals $5 c-15$, which is equal to 0 for $c=3$.

Problem 3

See the rules of theorem 3.3 on page 212,

THEOREM 3.3

Let A be an $n \times n$ matrix.
(a) If B is a matrix obtained by interchanging two rows of A, then $\operatorname{det} B=$ $-\operatorname{det} A$.
(b) If B is a matrix obtained by multiplying each entry of some row of A by a scalar k, then $\operatorname{det} B=k \cdot \operatorname{det} A$.
(c) If B is a matrix obtained by adding a multiple of some row of A to a different row, then $\operatorname{det} B=\operatorname{det} A$.
(d) For any $n \times n$ elementary matrix E, we have $\operatorname{det} E A=(\operatorname{det} E)(\operatorname{det} A)$.
thereby,
a) $\operatorname{det}(C)=3 \cdot \operatorname{det}(A)=6$
b) $\operatorname{det}\left(B^{4}\right)=(\operatorname{det} B)^{4}=(-3)^{4}=81$
c) $\operatorname{det}\left(A B^{-1} A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(B^{-1}\right) \operatorname{det}\left(A^{-1}\right)=$ $(\operatorname{det} A)\left(\frac{1}{\operatorname{det} B}\right)\left(\frac{1}{\operatorname{det} A}\right)=\left(\frac{1}{\operatorname{det} B}\right)=-\frac{1}{3}$

Problem 4

Put the system in augmented matrix form, and bring this in reduced echelon form (see "Procedure for Solving a System of Linear Equations" the blue box on page 37):

$$
\begin{aligned}
& {\left[\begin{array}{rrc|c}
1 & 4 & -1 & 1 \\
0 & 0 & -65 & 195 \\
0 & -6 & 7 & -15
\end{array}\right] \xrightarrow{r_{2}=-r_{2} / 65}\left[\begin{array}{rrr|r}
1 & 4 & -1 & 1 \\
0 & 0 & 1 & -3 \\
0 & -6 & 7 & -15
\end{array}\right] \xrightarrow{r_{3}=r_{3}-7 r_{2}}} \\
& {\left[\begin{array}{rrr|c}
1 & 4 & -1 & 1 \\
0 & 0 & 1 & -3 \\
0 & -6 & 0 & 6
\end{array}\right] \xrightarrow{r_{3}=-r_{3} / 6}\left[\begin{array}{rrr|r}
1 & 4 & -1 & 1 \\
0 & 0 & 1 & -3 \\
0 & 1 & 0 & -1
\end{array}\right] \underset{\substack{ \\
r_{2}=r_{2}}}{\substack{r_{2}=r_{3}}}} \\
& {\left[\begin{array}{rrr|r}
1 & 4 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -3
\end{array}\right] \xrightarrow{r_{1}=r_{1}-4 r_{2}+r 3}\left[\begin{array}{rrr|r}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -3
\end{array}\right]}
\end{aligned}
$$

Unique solution $x_{1}=2, x_{2}=-1, x_{3}=-3$.

Problem 5

Put the system in augmented matrix form, and bring it in reduced echelon form (see "Procedure for Solving a System of Linear Equations" the blue box on page 37):

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & -1 & 2 & 1 \\
1 & 3 & r & 2 \\
3 & 2 & 1 & 8
\end{array}\right] \underset{\substack{ \\
r_{2}=r_{2}-r_{1}-3 r_{1}}}{r_{3}}\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 \\
0 & 4 & r-2 & 1 \\
0 & 5 & -5 & 5
\end{array}\right] \underset{\substack{ \\
r_{3}=r_{2}}}{\substack{r_{2}=r_{3} / 5}}} \\
& \left.\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 \\
0 & 1 & -1 & 1 \\
0 & 4 & r-2 & 1
\end{array}\right] \xrightarrow[\substack{ \\
r_{1}=r_{1}+r_{3} \\
r_{3}=r_{3}-4 r_{2}}]{\substack{1 \\
0}} \begin{array}{ccc|r}
0 & 1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & r+2 & -3
\end{array}\right]
\end{aligned}
$$

From the final matrix we observe that the system is inconsistent for $r=-2$ as in that case we have a zero row on the left of the vertical augmentation line while a nonzero entry on the right.

Note: For $r=-2$ the final matrix is in reduced echelon form; while for $r \neq-2$ we should divide the third row by $r+2$, and perform $r_{2}=r_{2}+r_{3}$ and $r_{1}=r_{1}-r_{3}$ to get the matrix in reduced echelon form.

Problem 6

a) The standard matrix of S is (theorem 2.9 on page 174):
$\left[S\left(\mathbf{e}_{1}\right) S\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{rr}1 & -2 \\ 3 & 2\end{array}\right]$
b) Composite transformation $S T: R^{2} \rightarrow R^{2}$ states first apply T and then S. By theorem 2.12 on page 186 the standard matrix of $S T$ is found as the matrix product $A_{S} A_{T}$ with A_{T} the standard matrix of T and A_{S} the standard matrix of S.
The standard matrix of T is $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right]$ and thereby

$$
A_{S} A_{T}=\left[\begin{array}{rr}
1 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
17 & 14
\end{array}\right]
$$

c) The standard matrix of the inverse transform of T equals the inverse of standard matrix of T (see theorem 2.13 on page 187). For an invertible 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ its inverse is $\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ (see the boxed result on page 200) so the inverse of the standard matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right]$ of T is: $\left[\begin{array}{rr}1 & -4 \\ -1 & 5\end{array}\right]$

Problem 7

The eigenvalues of a square matrix A are the values of λ that satisfy $\operatorname{det}\left(A-\lambda I_{n}\right)=0$, see the boxed result on page 302 .

Hence we find the eigenvalues of the matrix by that:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{rr}
1 & 4 \\
-1 & 5
\end{array}\right]-\lambda I_{2}\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 4 \\
-1 & 5-\lambda
\end{array}\right]\right) \\
& =(1-\lambda)(5-\lambda)-(-1 \cdot 4) \\
& =\lambda^{2}-6 \lambda+9 \\
& =(\lambda-3)^{2}
\end{aligned}
$$

which is zero for $\lambda=3$ with multiplicity 2 (for the definition of multiplicity see page 305).

Problem 8

a) A straightforward strategy is to calculate $A \mathbf{v}_{\mathbf{1}}, A \mathbf{v}_{2}, A \mathbf{v}_{3}, A \mathbf{v}_{4}$ and $A \mathbf{v}_{5}$ and to notice that $A \mathbf{v}_{\mathbf{1}}=3 \mathbf{v}_{1}, A \mathbf{v}_{4}=3 \mathbf{v}_{4}, A \mathbf{v}_{5}=3 \mathbf{v}_{5}$, while $A \mathbf{v}_{2}$ and $A \mathbf{v}_{3}$ are not fixed multiples of respectively, $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$. So $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{4}}$ and \mathbf{v}_{5} are eigenvectors while $\mathbf{v}_{\mathbf{2}}$ and \mathbf{v}_{3} are not.
b) From the characteristic polynomial (see page 302 for the definition and its significance) of A it is immediately clear that is only real eigenvalue is $\lambda=3$.
c) From the characteristic polynomial we notice that there are complex eigenvalues, therefore the matrix is not diagonalizable (see the blue box on page 319, "Test for a Diagonalizable Matrix ...")

Problem 9

Start from the definition of the matrix representation of T with respect to β om page 277 , then,

$$
\begin{aligned}
{[T]_{\beta} } & =\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\beta}\left[T\left(\mathbf{b}_{2}\right)\right]_{\beta}\left[T\left(\mathbf{b}_{3}\right)\right]_{\beta}\right] \\
& =\left[B^{-1} T\left(\mathbf{b}_{1}\right) B^{-1} T\left(\mathbf{b}_{2}\right) B^{-1} T\left(\mathbf{b}_{3}\right)\right] \\
& =B^{-1}\left[T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]
\end{aligned}
$$

with

$$
B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 2 \\
-1 & 0 & -2 \\
-2 & -2 & -3
\end{array}\right]
$$

while we obtain $T\left(\mathbf{b}_{1}\right), T\left(\mathbf{b}_{2}\right), T\left(\mathbf{b}_{3}\right)$ from the transformation rule

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-x_{3} \\
2 x_{1}
\end{array}\right] \Longrightarrow T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{l}
0 \\
3 \\
2
\end{array}\right] ; T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] ; T\left(\mathbf{b}_{3}\right)=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]
$$

Now we can compute $B^{-1}\left[T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]$ for instance by applying the algorithm for computing $A^{-1} B$ stated on page 139 , that is ...

Problem 9

... we augment B with the matrix $\left[T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]$ to get

$$
\left[B \mid T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]
$$

and bring it by Gausssian elimination steps into the form

$$
\left[I_{3} \mid B^{-1}\left[T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]\right]
$$

as shown below:

$$
\begin{aligned}
& {\left[B \mid T\left(\mathbf{b}_{1}\right) T\left(\mathbf{b}_{2}\right) T\left(\mathbf{b}_{3}\right)\right]=\left[\begin{array}{rrr|rrr}
1 & 1 & 2 & 0 & 1 & 0 \\
-1 & 0 & -2 & 3 & 3 & 5 \\
-2 & -2 & -3 & 2 & 2 & 4
\end{array}\right] \underset{\substack{ \\
r_{2}=r_{2}+r_{1} \\
r_{3}=r_{3}+2 r_{2}}}{\substack{ \\
r_{2}}}} \\
& {\left[\begin{array}{lll|lll}
1 & 1 & 2 & 0 & 1 & 0 \\
0 & 1 & 0 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 4 & 4
\end{array}\right] \xrightarrow{r_{1}=r_{1}-r_{2}}+2 r_{3}\left[\begin{array}{lll|rcc}
1 & 0 & 0 & -7 & -11 & -13 \\
0 & 1 & 0 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 4 & 4
\end{array}\right]=\left[l_{3} \mid[T]_{\beta}\right]}
\end{aligned}
$$

Problem 10

By the Gram-Scmidt procedure (Theorem 6.6 on page 378) an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is found as

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{u}_{1}=\left[\begin{array}{lll}
1 & 0-1 & 0
\end{array}\right]^{T} \\
\mathbf{v}_{2} & =\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& =\mathbf{u}_{2}-\frac{(1 \cdot 1)+(1 \cdot 0)+(-3 \cdot-1)+(1 \cdot 0)}{(1 \cdot 1)+(0 \cdot 0)+(-1 \cdot-1)+(0 \cdot 0)} \mathbf{v}_{1} \\
& =\left[\begin{array}{r}
1 \\
1 \\
-3 \\
1
\end{array}\right]-2\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right] \\
\mathbf{v}_{3} & =\mathbf{u}_{3}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& =\mathbf{u}_{3}-\frac{-8}{2} \mathbf{v}_{1}-\frac{-8}{4} \mathbf{v}_{2}=\mathbf{u}_{3}+4 \mathbf{v}_{1}+2 \mathbf{v}_{2} \\
& =\left[\begin{array}{r}
0 \\
-1 \\
8 \\
1
\end{array}\right]+4\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Problem 11

a) Notice that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}\right\}$ is an orthonormal basis for W as $\left\|\mathbf{v}_{\mathbf{1}}\right\|=\left\|\mathbf{v}_{\mathbf{2}}\right\|=1$ and $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=0$. Then by Theorem 6.7 on page 392 we find the orthogonal projection \mathbf{w} of \mathbf{u} on W as

$$
\begin{aligned}
\mathbf{w} & =\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\left(\mathbf{u} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{\mathbf{2}} \\
& =3 \mathbf{v}_{\mathbf{1}}+3 \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
2 \\
2 \\
3 \\
1
\end{array}\right]
\end{aligned}
$$

b) The distance from \mathbf{u} to W is $\|\mathbf{z}\|$ (see Theorem 6.7 as well as the blue box on page 397)

$$
\mathbf{z}=\mathbf{u}-\mathbf{w}=\left[\begin{array}{r}
4 \\
1 \\
3 \\
-1
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1 \\
0 \\
-2
\end{array}\right] ;\|\mathbf{z}\|=\sqrt{2^{2}+(-1)^{2}+0^{2}+(-2)^{2}}=3
$$

c) For any subspace W of $R^{n}: \operatorname{dim} W+\operatorname{dim} W^{\perp}=n$ (see boxed result on page 393). So here: $\operatorname{dim} W^{\perp}=4-2=2$

Problem 12

It is stated that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$ are in $R^{\mathbf{3}}$ and that:
(1) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent,
(2) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is not
which implies that $\mathbf{v}_{\mathbf{3}}$ is a linear combination of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$, which equivalently can be stated as that $\mathbf{v}_{\mathbf{3}}$ is in the span of $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}\right\}$. So a basis for W is given by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and thereby $\operatorname{dim} W=2$ and the subspace of W can be described as a 2- dimensional plane through the origin of R^{3}.

Observe that A is a square 3×3 matrix. Now (1) and (2) immediately imply that rank A is 2 (as rank A is the number of linear independent colums in A), which is not equal to the number of columns (i.e. A has not a full rank) and therefore A is not invertible and equivalently has a determinant equal to zero (see theorem 2.6 on page 138).

Hence from the given statements the only statement that is correct, is that $\operatorname{det}(A)=0$.

Problem 13

a) - $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is not linear independent as $\mathbf{v}_{2}=3 \mathbf{v}_{1}$

- $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$ is linear independent as \mathbf{v}_{3} is not a fixed multiple of $\mathbf{v}_{\mathbf{1}}$
- $\left\{\mathbf{v}_{1}\right\}$ is linear independent (see the definition of linear independence on page $75 / 76$)
- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ can not be linear independent as each $\mathbf{v}_{\boldsymbol{i}} \in R^{3}$, so only a maximum number of 3 of those vectors can be linear independent (see theorem 4.6 page 246)
- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}, \mathbf{v}_{5}\right\}$ can not be linear independent for the same reason as stated immediately above
- to check if $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{4}\right\}$ is linear independent we put these vectors as column vectors in a matrix and find its reduced echelon form. This turns out to be the the identity matrix, so $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linear independent
b) To span R^{3}, the set needs to contain 3 or more vectors of which 3 are linear independent (see e.g. the boxed result on page 244). $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ do not contain 3 linear independent vectors as $\mathbf{v}_{\mathbf{2}}=3 \mathbf{v}_{\mathbf{1}}$, while $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ does contain 3 linear independent vectors as we have verified in (a). So of the given sets the only set that spans R^{3} is $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{4}\right\}$

Problem 14

With $t=\pi / 4$ and $A=\left[\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right]$ then

$$
A=\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]
$$

Hence with $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
A A \mathbf{v} & =\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

