Exam in Linear Algebra

First Year at The Faculties of Engineering and Science and of Health

 January 3rd, 2017, 9.00-13.00This test has 10 pages and 15 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.
It is allowed to use books, notes, photocopies etc. It is not allowed to use any electronic devices such as pocket calculators, mobile phones or computers.
The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:

STUDENT NUMBER:

COURSE:
\square Hold 1 (Jacob Broe)
\square Hold 2 (Nikolaj Hess-Nielsen)
\square English course (Athanasios Georgiadis)

In all problems: there is only one correct answer to each question.

Problem 1 (5\%)

What is the number of solutions of the following system of linear equations

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
2 x_{1}+x_{2}+x_{3} & =3 \\
x_{1}+x_{3} & =0
\end{aligned}
$$infinitely many

Problem 2 (5\%)

Let A be a $4 \times n$ matrix and let E be the elementary matrix $E=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
How does the matrix $E A$ appear from A ?By adding 3 times row 1 to row 3 .By adding 3 times row 3 to row 1 .By adding -3 times row 3 to row 1 .
\boxtimes By adding -3 times row 1 to row 3 .By adding 3 times column 1 to column 3 .By adding -3 times column 3 to column 1 .

Problem 3 (10\%)

Let $T: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}$ be the linear transformation with standard matrix

$$
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 2 & 1 \\
0 & 2 & 1 & 3 & 4 \\
1 & 1 & 0 & 2 & 2
\end{array}\right]
$$

1. What is the value of n ?
4
$\boxtimes 5$
6
2. What is the value of m ?『3
4
6
3. What the rank of A ?
2
$\boxtimes 3$
45
4. What is the dimension of the null space of T ?1
$\boxtimes 2$3
45
5. Is T one-to-one?Yes
\boxtimes No
6. Is T onto?

\boxtimes Yes

No
Problem 4 (6\%)

Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Then $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for \mathcal{R}^{3}. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be the orthogonal basis for \mathcal{R}^{3} obtained by using the GramSchmidt process on \mathcal{B}. Then $\mathbf{v}_{1}=\mathbf{u}_{1}$.
What is \mathbf{v}_{2} ?

$\boxtimes\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$

Problem 5 (6\%)

Let A be an $m \times n$ matrix and let $B=\left[\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3} \mathbf{b}_{4} \mathbf{b}_{5}\right]$ and C be matrices satisfying that the products $A B, B C$ and $C A$ are defined.

1. How many columns are there in $A B$?

『 5

m
2. What is the size of $B C$?$m \times n$$m \times 5$$5 \times n$
$\boxtimes n \times m$

The characteristic polynomial of

$$
A=\left[\begin{array}{cccc}
-4 & 6 & -6 & 6 \\
-1 & 3 & -2 & 2 \\
-1 & 1 & 0 & 2 \\
-3 & 3 & -3 & 5
\end{array}\right]
$$

is $(t-1)(t+1)(t-2)^{2}$.

1. Let $\mathbf{v}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$. For which value of λ is $A \mathbf{v}=\lambda \mathbf{v}$?-1
$\boxtimes 2$$-2$
2. Which one of the following is an eigenvector of A ?
$\square\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
$\boxtimes\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$

3. Is A invertible?
\boxtimes Yes
4. Is A diagonalizable?
\boxtimes Yes
No

Problem 7 (6\%)

Let T be the linear transformation with standard matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is a basis for \mathcal{R}^{2}.
Which one of the following is the matrix representation of T with respect to \mathcal{B}, denoted by $[T]_{\mathcal{B}}$?
$\square\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]$
$\boxtimes\left[\begin{array}{cc}-2 & -4 \\ 3 & 7\end{array}\right]$
$\square\left[\begin{array}{cc}1 & 3 \\ 4 & 10\end{array}\right]$
$\square\left[\begin{array}{ll}-2 & 6 \\ -1 & 4\end{array}\right]$

Problem 8 (10\%)
Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$.

1. Are the vectors \mathbf{v}_{1} and \mathbf{v}_{2} orthogonal?
\boxtimes Yes
2. What is the orthogonal projection of \mathbf{u} on W ?
$\square\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$
$\square\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]$
$\square\left[\begin{array}{c}0 \\ -2 \\ 2\end{array}\right]$
$\boxtimes\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$
3. What is the orthogonal projection of \mathbf{u} on W^{\perp} ?
$\square\left[\begin{array}{c}-4 \\ 0 \\ 2\end{array}\right]$
$\square\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$
$\square\left[\begin{array}{c}-2 \\ 2 \\ 2\end{array}\right]$
$\boxtimes\left[\begin{array}{c}-2 \\ -2 \\ 2\end{array}\right]$
4. What is the dimension of W^{\perp} ?0
『1
2
3
4

Problem 9 (8\%)
Let $A=\left[\begin{array}{llll}2 & 1 & 1 & -1 \\ 0 & 4 & 1 & -2 \\ 2 & 1 & 1 & -1\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{c}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$.

1. Is \mathbf{b} contained in $\mathrm{Col} A$?
Yes \boxtimes No
2. Is c contained in $\mathrm{Col} A$?Yes \boxtimes No
3. Is \mathbf{b} contained in $\operatorname{Null} A$?Yes
\boxtimes No
4. Is c contained in Null A ?
\boxtimes YesNo

Problem 10 (6\%)

Let A and B be 7×7 matrices with $\operatorname{det} A=5$ and $\operatorname{det} B=3$.

1. What is $\operatorname{det}(-A)$?
$\boxtimes-5$
0
4
2. What is $\operatorname{det} A^{T} B$?$-15$$-2$
2
$\boxtimes 15$
$\frac{5}{3}$$\frac{3}{5}$$-\frac{3}{5}$
3. What is $\operatorname{det} A^{-1} B$?$-15$$-2$215
$\frac{5}{3}$
$\boxtimes \frac{3}{5}$

Page 7 of 10

Problem 11 (4\%)

Let $A=\left[\begin{array}{llll}1 & -1 & 1 & 1 \\ 2 & -1 & 1 & 1 \\ 0 & -2 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 0 & 2 \\ 1 & 1 & 3 \\ 3 & 2 & 4\end{array}\right]$.
Let $C=A B$. What is the $(2,1)$-entry in C, i.e., c_{21} ?$-4$$-3$
3
4
区 5

Problem 12 (4\%)

Let $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 5\end{array}\right]$.
What is the determinant of A ?-8
-4
《 48

Problem 13 (5\%)
Let $Q=c\left[\begin{array}{lll}a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a\end{array}\right]$, where a and c are constants.
For which combination of a and c is Q an orthogonal matrix ?$\square a=2, c=\frac{1}{\sqrt{12}}$$a=-1, c=3$$a=0, c=\sqrt{8}$$a=1, c=3$
$\boxtimes a=-1, c=\frac{1}{3}$
$\square a=1, c=-\frac{1}{3}$

Let A be a 12×15 matrix.
Answer the following true/false problems about A.

1. A is a square matrix $\quad \square$ True
2. $\mathrm{Col} A$ is a subspace of $\mathcal{R}^{12} \boxtimes$ True
3. $\mathrm{Col} A$ is a subspace of $\mathcal{R}^{15} \quad \square$ True
4. $\mathrm{Col} A$ and Row A have the same di- \boxtimes True mension
5. $\mathrm{Col} A$ and Null A have the same di- $\quad \square$ True $\quad \boxtimes$ False mension

Problem 15 (6\%)

The following commands are entered in the MATLAB Command Window:

```
>> u = [1; 1; 1; 1];
>> v = [1; 2; 3; 4];
>> w = [1; 3; 6; 10];
>> x = [1; 4; 10; 19 ];
>> A = [u v w x];
>> rref(A)
ans =
    1 0}000
    0
    0}00 1 3 
    0}00
>> det(A)
```

1. Which one of the following is true?v is a row vector $\boxtimes \mathrm{v}$ is a column vectorv is a 2×2 matrix
2. What is MATLAB's answer to the last command?-3-9
$\boxtimes 0$
1
