Test Exam in Calculus

First Year at The Faculty of Engineering and Science and The Faculty of Medicine

March 2016

The present exam set consists of 9 numbered pages with 14 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your full name and student number below.

Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (8 points)

A plane curve is given by

$$
\begin{aligned}
& x=1+2 t^{2} \\
& y=1+t^{3}
\end{aligned}
$$

where the parameter t runs through the positive real numbers. Mark the correct statements below.
(a) (1 point). Which point on the curve corresponds to the parameter value $t=1$?
$\square(1,1)$$(3,2)$$(9,10)$
$(0,0)$
$\square\left(\frac{1}{4}, \frac{\sqrt{3}}{3}\right)$
(b) (7 points). What is the curvature of the curve for $t=1$?
$\frac{12}{125}$
$\frac{24}{5}$
$\square \frac{\sqrt{3}}{2}$
2

Problem 2 (6 points)

A curve in space is given by

$$
\begin{aligned}
& x=\cos (2 t) \\
& y=\sin (2 t) \\
& z=t^{2}+3
\end{aligned}
$$

where the parameter t runs through the real numbers. Mark the correct expression for the arc length of the curve from $t=0$ to $t=3$.
$\square \int_{0}^{3} \sqrt{1+4 t^{2}} d t$
$\square \int_{0}^{3} \sqrt{1+\left(t^{2}+3\right)^{2}} d t$
$\square \int_{0}^{3} 2 \sqrt{1+t^{2}} d t$
$\square \int_{0}^{3}\left(4+t^{2}\right) d t$
$\square \int_{0}^{3}(2+2 t) d t$
$\square \int_{0}^{3}(-\sin (2 t)+\cos (2 t)+2 t) d t$

Problem 3 (6 points)

A function is defined by

$$
f(x)=\ln \left(1+x^{2}\right)
$$

Which of the polynomials below is the 2 nd order Taylor polynomial for $f(x)$ about the point $a=0$?
$\square 1+x+\frac{1}{2} x^{2}$
$\square x+\frac{1}{6} x^{2}$
$\square x+x^{2}$
$\square x^{2}$
$\square x-\frac{1}{2} x^{2}$
$\square \frac{1}{2} x^{2}+\frac{1}{6} x^{3}$

Problem 4 (7 points)

Consider the differential equation

$$
\frac{d y}{d x}=6 x^{2} y, \quad y>0
$$

There is a unique solution $y(x)$ with initial value $y(0)=3$. Answer the following questions regarding this solution:
(a) (3 points). What is the function value $y(1)$?
$\square 6 e^{3}$
$\square 12$
$\square 3 e^{2}$
6
$18 e$
(b) (3 points). What is the value of $y^{\prime}(1)$?
$\square 18 e^{2}$
$\square 36 e^{3}$
36
2$12 \ln (6)$
(c) (1 points). What is the value of $y^{\prime}(0)$?
06
12
243

Problem 5 (8 points)

Consider the initial value problem

$$
\frac{d y}{d x}+2 x y=x, \quad y(0)=1
$$

Answer the following questions regarding the unique solution $y(x)$:
(a) (4 points). What is the function value $y(1)$?
$\square \frac{1}{2}+\frac{1}{2} e^{-1}$
$\square e^{-1}$$1+e^{-1}$
$\square 1+e$
(b) (4 points). What is the value of $y^{\prime}(1)$?$-1-2 e$ \square $\square-1-2 e^{-1}$
$\square-e^{-1}$
$\square-5$

Problem 6 (7 points)

Consider the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+10 y=0
$$

A number of function expressions, which contains two arbitrary constants c_{1} and c_{2}, are listed below. Mark the expression which constitute the complete solution of the differential equation.
$\square y(t)=c_{1} e^{t}+c_{2} e^{3 t}$
$\square y(t)=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)$
$\square y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$
$\square y(t)=c_{1} e^{-2 t}+c_{2} e^{-4 t}$
$\square y(t)=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)$
$\square y(t)=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)$
$\square y(t)=c_{1} e^{-t}+c_{2} e^{-3 t}$
$\square y(t)=c_{1} e^{-5 t}+c_{2} t e^{-5 t}$
$\square y(t)=c_{1} e^{t} \cos (2 t)+c_{2} e^{t} \sin (2 t)$
$\square y(t)=c_{1} e^{-3 t} \cos (t)+c_{2} e^{-3 t} \sin (t)$
$\square y(t)=c_{1} e^{6 t}+c_{2} e^{10 t}$

Problem 7 (6 points)

Consider the inhomogeneous differential equation

$$
y^{\prime \prime}+4 y^{\prime}+6 y=3 t-4
$$

(a) (3 points). Which of the following functions $y_{p}(t)$ can, for a suitable choice of the constants A and B, become a particular solution of the differential equation?
$\square y_{p}(t)=A e^{4 t}+B e^{6 t}$
$\square y_{p}(t)=A t+B$
$\square y_{p}(t)=A \sin (4 t)+B \cos (6 t)$
$\square y_{p}(t)=A e^{3 t}+B e^{-4 t}$
(b) (3 points). What must the values of the constants A and B be in order to obtain a particular solution?
$\square A=1, \quad B=3$
$\square A=\frac{1}{5}, \quad B=-4$
$\square A=-1, \quad B=5$$A=\frac{1}{2}, \quad B=-1$

Problem 8 (8 points)

A function is defined by

$$
f(x, y)=e^{4 y+2 x y}
$$

(a) (3 points). Mark the correct expression for the partial derivative $f_{x}(x, y)$.
$\square e^{2 y}$
$\square e^{4 y+2 x y}$
$\square 2 e^{2 y}$
$\square(4 y+2 x y) e^{4 y+2 x y-1}$
$\square 6 e^{4 y+2 x y}$
$\square 2 y e^{4 y+2 x y}$
(b) (3 point). Mark the correct expression for the partial derivative $f_{y}(x, y)$.
$\square(4+2 x) e^{4 y+2 x y}$
$\square 4 e^{4 y+2 x y}$
$\square e^{4+2 x}$
$\square(4 y+2 x y) e^{4 y+2 x y-1}$
$\square e^{4 y+2 x y}$
$2 e^{4 y+2 x y}$
(c) (2 points). Which of the points below is a critical point of the function f ?

$\square(3,0)$
$\square(1,-2)$
$\square(-1,3)$
$\square(2,1)$
$\square(-2,0)$

Problem 9 (8 points)

A function is defined by

$$
f(x, y)=x \sin (y)+x^{2} .
$$

(a) (3 points). What is the gradient vector $\nabla f(P)$ at the point $P=(1,0)$?$\mathbf{i}-\mathbf{j}$
$2 i$$2 \mathbf{i}+\mathbf{j}$ \square
(b) (2 points). What is the value of the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(1,0)$ and in the direction of the unit vector $\mathbf{u}=\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}$?
$\frac{8}{5}$
$\frac{1}{5}$
믛
$\square-\frac{3}{5}$
(c) (3 points). Which of the equations below describes the tangent plane to the graph of f at the point $Q=(1,0,1)$?
$\square 3 x-y-z=2$
$\square x-y+2 z=3$
$\square x-y-z=0$
$\square x+y-z=\pi$$z=1$$2 x+y-z=1$

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x, y) which satisfy the inequalities

$$
1 \leq x^{2}+y^{2} \leq 4, \quad 0 \leq x, \quad 0 \leq y
$$

Mark the value of the double integral

$$
\iint_{\mathcal{R}}\left(x^{2}+y^{2}-1\right) d A
$$

$\square \frac{3 \pi}{2}$

$\square \frac{7 \pi}{5}$
$\square \frac{15}{11}$
$\square 15$
$\square \frac{\pi^{2}}{4}$
$\square 10 \pi$$\square 21$

Problem 11 (5 points)

Two complex numbers are given by

$$
z_{1}=\frac{2+i}{3-i}+\frac{3+i}{2}, \quad z_{2}=\left(e^{1+\frac{\pi}{3} i}\right)^{6} .
$$

(a) (3 points). What is z_{1} written in standard form?$2+i$$3-2 i$
$\square-i$
$\frac{1}{5}-\frac{3}{5}$
$\square 0$
(b) (2 points). What is z_{2} written in standard form?
1$-e^{6}$$e^{3}$
$\square \frac{\sqrt{2}}{2}$

Remark. In problem 12 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

Problem 12 (6 points)

Let \mathcal{T} be the region in space consisting of those points (x, y, z) which satisfy the inequalities

$$
-2 \leq x \leq 2, \quad 0 \leq y \leq 4-x^{2}, \quad-y \leq z \leq y
$$

A solid body with density function $\delta(x, y, z)=3-y$ covers region \mathcal{T} precisely. The volume of the body is denoted V and its mass is denoted m. Mark all of the correct expressions below. Note: You are not asked to evaluate the integrals.
$\square \quad m=\int_{-2}^{2} \int_{0}^{4-x^{2}} \int_{-y}^{y}(3-y) d z d y d x$.
$\square \quad m=\int_{0}^{4} \int_{-\sqrt{4-y}}^{\sqrt{4-y}} \int_{-y}^{y}(3-y) d z d x d y$.
$\square \quad m=\int_{0}^{4-x^{2}} \int_{-2}^{2} \int_{-y}^{y}(3-y) d z d x d y$.
\square

$$
V=\int_{0}^{4-x^{2}} \int_{-2}^{2} \int_{-y}^{y} d z d x d y
$$

\square

$$
V=\int_{-2}^{2} \int_{0}^{4-x^{2}} \int_{-y}^{y} d z d y d x
$$

Problem 13 (10 points).

Answer the following 5 True/False problems:
(a) (2 points). One has

$$
\arctan \left(\tan \left(\frac{5 \pi}{4}\right)\right)=\frac{5 \pi}{4} .
$$

(b) (2 points). Let D be the region in the plane consisting of those points (x, y) which satisfy the inequalities $0 \leq x \leq 1$ and $0<y \leq 1$. Let f be the function with rule

$$
f(x, y)=x^{2} y+\frac{1}{y}
$$

and domain D. Then f attains a global maximum on D.True
(c) (2 points). The domain of the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ equals \mathbf{R}^{2} corresponding to the entire $x y$-plane.
(d) (2 points). For the function $f(x, y)=\sqrt{x^{2}+y^{2}}$, the partial derivative $f_{x}(x, y)$ does not exist at the point $(x, y)=(0,0)$.
False
(e) (2 points). The point with rectangular coordinates $(x, y)=(1,1)$ can be described by $(r, \theta)=\left(-\sqrt{2}, \frac{5 \pi}{4}\right)$ in polar coordinates.True

Problem 14 (5 points)

The figure below shows the graph of the function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

in polar coordinates.

Which one of the following rules for f corresponds to this figure?
$\square f(\theta)=2-\cos (3 \theta)$
$\square f(\theta)=2+\cos (2 \theta)$
$\square f(\theta)=2+\cos (\theta)$
$\square f(\theta)=2+\sin (2 \theta)$
$\square f(\theta)=1+\sin (3 \theta)$
$\square f(\theta)=1+\sin (\theta)$

