Reexam in Calculus
 Wednesday 17 February 2016
 First Year at the Faculty of Engineering and Science
 and
 The Faculty of Medicine

The present exam set consists of 7 numbered pages with 12 problems.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
The listed percentages specify the weightings of the individual problems in the assessment of the exam.
The exam set has two independent parts.

- Part I contains "regular problems". Here it is important that you explain the idea behind the solution, and that you provide relevant intermediate results.
- Part II consists of "multiple choice" problems. The answers of Part II must be given on these sheets of paper.

Remember to write your full name and student number on each page of your solutions. Number each page and indicate the total number of sheets on page 1. Good luck!

NAME:

STUDENT NUMBER:

Part I ("regular problems")

Problem 1 (8\%)

A plane curve is given by

$$
\begin{aligned}
& x=e^{t}, \\
& y=e^{-t}
\end{aligned}
$$

where the parameter t runs through the real numbers.
(a) Find an expression for the curvature $\kappa(t)$ of the curve.
(b) Verify that the point $P=(1,1)$ lies on the curve and compute the curvature of the curve at this point.

Problem 2 (7\%)

Find the Taylor polynomial of degree two for the function

$$
f(x)=\sqrt{2 x+1}
$$

about the point $x=0$.

Problem 3 (10\%)

(a) Find the general solution of the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0 .
$$

(b) Find the general solution of the inhomogeneous differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 t+8
$$

Problem 4 (8\%)

Consider the function

$$
f(x, y)=\arctan \left(\frac{x+y}{4}\right) .
$$

(a) Find the domain of f.
(b) Sketch the level curve with the equation $f(x, y)=1$.

Problem 5 (8\%)

A function is defined by

$$
f(x, y, z)=\sin (2 x+y)+z^{2} .
$$

(a) Find the gradient vector $\nabla f(x, y, z)$.
(b) In which direction from the point $P=(1,-2,1)$ does f increase the most? (Specify a unit vector).

Problem 6 (12\%)

The surface \mathscr{F} in space is determined by the equation $z=f(x, y)$ where

$$
f(x, y)=\ln \left(x^{2}+y\right) .
$$

(a) Verify that the point $P=(2,-3,0)$ lies on the surface \mathscr{F}.
(b) Determine the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$.
(c) Find an equation of the tangent plane to the surface \mathscr{F} at the point $P=(2,-3,0)$.

Problem 7 (12\%)

Let \mathscr{R} be the plane region consisting of those points (x, y) for which

$$
1 \leq x^{2}+y^{2} \leq 9 .
$$

(a) Sketch the region \mathscr{R}.
(b) Evaluate the double integral

$$
\iint_{\mathscr{R}} \frac{1}{x^{2}+y^{2}} d A
$$

Problem 8 (7\%)

Find the complex roots of the polynomial

$$
z^{2}-(3+4 i) z-1+7 i .
$$

Part II ("multiple choice" problems)

Problem 9 (10\%).

Answer the following 5 True/False problems:
a. For every real number b the following equation, in the unknown x, has precisely one solution:

$$
\arcsin (x)=b
$$

False
b. For the function $f(t)=e^{(1+2 i) t}$, where t is a real variable, one has

$$
\frac{f^{\prime}(t)}{f(t)}=1+2 i .
$$True

False
c. Let D be the plane region consisting of those points (x, y) for which $-1 \leq x \leq 1$ and $0 \leq y \leq 1$. Let f be the function with rule

$$
f(x, y)=\sin (x+y)+x^{3}
$$

and domain D. Then f attains a global minimum on D.False
d. For every complex number z one has

$$
z \bar{z} \geq 0
$$

\square TrueFalse
e. The point having rectangular coordinates $(x, y)=(1,2)$ can be represented by the polar coordinates $(r, \theta)=\left(\sqrt{5}, \frac{\pi}{4}\right)$.
False

Remark. In problems 10 and 11 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

Problem 10 (6\%)

Let \mathscr{T} be the region in space consisting of those points (x, y, z) for which

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 1-x, \quad 0 \leq z \leq 1-x^{2}-y^{2} .
$$

A solid body with density function $\delta(x, y, z)=3-x^{2}-y^{2}-z^{2}$ covers precisely this region. The volume of the body is denoted V and its mass is denoted m. Mark all correct expressions below. Remark: Do not evaluate the integrals.
$\square \quad m=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}-(1-x)^{2}}\left(3-x^{2}-y^{2}-z^{2}\right) d z d y d x$.
$\square \quad m=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}-y^{2}}\left(3-x^{2}-y^{2}-z^{2}\right) d z d y d x$.
$\square \quad m=\int_{0}^{1} \int_{1+y}^{1-y} \int_{0}^{1-x^{2}-y^{2}}\left(3-x^{2}-y^{2}-z^{2}\right) d z d x d y$.
$\square \quad V=\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}-y^{2}} d z d x d y$.
$\square \quad V=\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-x^{2}-y^{2}} d z d y d x$.

Problem 11 (6\%)

A complex polynomial is given by

$$
p(z)=z^{3}+5 z^{2}+z+5 .
$$

Mark all correct statements below.
\square The complex number i is a root of the polynomial $p(z)$.
$\square p(z)$ has no real roots.
$\square p(z)$ has precisely 3 roots, counting multiplicity.
$\square p(z)$ has three different roots.
$\square p(z)$ has a root of multiplicity 3 .

Problem 12 (6\%)

A differentiable function $f(x, y)$ is defined for $-3 \leq x \leq 3$ and $-3 \leq y \leq 3$. The two figures below show selected level curves and gradient vectors for the function. There are precisely two critical points with coordinates $(-1,0)$ and $(1,0)$. Determine the type of each critical point and mark your answer below.

a. At $(-1,0)$ the function f has alocal maximumlocal minimumsaddle point
b. At $(1,0)$ the function f has a
\square local maximumlocal minimumsaddel point

