Exam in Calculus
Friday 8 January 2016
First Year at the Faculty of Engineering and Science
and
The Faculty of Medicine

The present exam set consists of 7 numbered pages with 12 problems.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
The listed percentages specify the weightings of the individual problems in the assessment of the exam.

The exam set has two independent parts.

- Part I contains "regular problems". Here it is important that you explain the idea behind the solution, and that you provide relevant intermediate results.
- Part II consists of "multiple choice" problems. The answers of Part II must be given on these sheets of paper.

Remember to write your full name and student number on each page of your solutions. Number each page and indicate the total number of sheets on page 1. Good luck!

NAME:

STUDENT NUMBER:

Part I ("regular problems")

Problem 1 (8\%)

A particle is moving along a curve in space. The coordinates of the particle at time t is given by

$$
\begin{aligned}
& x=4 t+1, \\
& y=\cos (3 t), \\
& z=\sin (3 t) .
\end{aligned}
$$

(a) Determine the arc length of the curve from $t=0$ to $t=4$.
(b) Find the acceleration vector for the particle.

Problem 2 (6\%)

Let $f(x)$ be a function where the first 3 derivatives exist at $x=0$. The Taylor polynomial of degree 3 for $f(x)$ at $a=0$ is

$$
P_{3}(x)=2-7 x+x^{3} .
$$

Find the values $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$.

Problem 3 (10\%)

(a) Find the general solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0 .
$$

(b) Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0, \quad y(0)=0, \quad y^{\prime}(0)=3 .
$$

Problem 4 (8\%)

Consider the function

$$
f(x, y)=\frac{5 x+3 y-1}{x+y} .
$$

(a) Find the domain of f.
(b) Sketch the level curve with the equation $f(x, y)=2$.

Problem 5 (12\%)

A function is defined by

$$
f(x, y)=x e^{y} .
$$

(a) Find the gradient vector $\nabla f(x, y)$.
(b) Compute the directional derivative of f at the point $P=(1,0)$ in the direction of the unit vector

$$
\mathbf{u}=\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}
$$

(c) In which direction is the directional derivative at $P=(1,0)$ maximal? (Specify a unit vector). In which direction is the directional derivative at P minimal?

Problem 6 (9\%)

The surface \mathscr{F} in space is determined by the equation $F(x, y, z)=0$ with

$$
F(x, y, z)=x^{2}+\sin (x y)+4 z .
$$

(a) Verify that the point $P=(2,0,-1)$ lies on the surface \mathscr{F}.
(b) Determine the partial derivatives $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ and $\frac{\partial F}{\partial z}$.
(c) Find an equation of the tangent plane to the surface \mathscr{F} at the point $P=(2,0,-1)$.

Problem 7 (9\%)

Let \mathscr{R} be the plane region consisting of those points (x, y) for which

$$
0 \leq x, \quad x^{2}+y^{2} \leq 4
$$

(a) Sketch the region \mathscr{R}.
(b) Evaluate the double integral

$$
\iint_{\mathscr{R}} e^{x^{2}+y^{2}} d A
$$

Problem 8 (7\%)

Find the complex roots of the polynomial

$$
z^{2}+(-3+i) z+4-3 i
$$

Part II ("multiple choice" problems)

Problem 9 (10\%).

Answer the following 5 True/False problems:
a. The point having rectangular coordinates $(x, y)=(1,1)$ can be represented by the polar coordinates $(r, \theta)=\left(\sqrt{2}, \frac{\pi}{4}\right)$.
False
b. The following identity holds:

$$
e^{3 \pi i}=-3 .
$$True

c. The function

$$
f(x, y)=2 x^{2}-3 y^{2}
$$

attains a global maximum at the point $(0,0)$.False
d. The following identity holds:

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{\pi}{4}
$$

e. For every real number θ one has

$$
e^{i \theta}+e^{-i \theta}=2 \cos \theta
$$True

False

Remark. In problems 10 and 11 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

Problem 10 (6\%)

Let \mathscr{T} be the region in space consisting of those points (x, y, z) for which

$$
-1 \leq x \leq 1, \quad 0 \leq y \leq \sqrt{1-x^{2}}, \quad-y \leq z \leq y .
$$

A solid body with density function $\delta(x, y, z)=2-y^{2}$ covers precisely this region. The volume of the body is denoted V and its mass is denoted m. Mark all correct formulas below. Remark: Do not evaluate the integrals.
$\square \quad V=\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{-y}^{y} d z d y d x$.
$\square \quad V=\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{-y}^{y} d z d x d y$.
$\square \quad V=\int_{-y}^{y} \int_{0}^{\sqrt{1-x^{2}}} \int_{-1}^{1} d x d y d z$.
$\square \quad m=\int_{-y}^{y} \int_{0}^{\sqrt{1-x^{2}}} \int_{-1}^{1}\left(2-y^{2}\right) d x d y d z$.
$\square \quad m=\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{-y}^{y}\left(2-y^{2}\right) d z d y d x$.

Problem 11 (6\%)

Let $p(z)$ be a complex polynomial of degree 9 . Suppose that $p(z)$ has real coefficients. Mark all correct statements below.
$\square p(z)$ will always have at least one real root.
$\square p(z)$ will always have at least two real roots.
$\square p(z)$ has precisely 9 roots, counting multiplicity.
\square If z_{0} is a root of $p(z)$ then \bar{z}_{0} is also a root of $p(z)$.
$\square p(z)$ will always have 9 different roots.

Problem 12 (6\%)

A differentiable function $f(x, y)$ is defined for $-4 \leq x \leq 4$ and $-4 \leq y \leq 4$. The two figures below show selected level curves and gradient vectors for the function. There are precisely two critical points with coordinates $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$. Determine the type of each critical point and mark your answer below.

a. At $(-\sqrt{3}, 0)$ the function f has alocal maximumlocal minimumsaddle point
\square
b. At $(\sqrt{3}, 0)$ the function f has alocal maximumlocal minimumsaddel point

