Exam in Calculus

Monday 8 June 2015

First Year at the Faculty of Engineering and Science and The Faculty of Medicine

The present exam set consists of 7 numbered pages with 12 problems.

It is allowed to use books, notes etc. It is **not allowed** to use **electronic devices**.

The listed percentages specify the weightings of the individual problems in the assessment of the exam.

The exam set has two independent parts.

- Part I contains "regular problems". Here it is important that you explain the idea behind the solution, and that you provide relevant intermediate results.
- Part II consists of "multiple choice" problems. **The answers of Part II** must be given on **these sheets of paper**.

Remember to write your full name and student number on each page of your solutions. **Number each page** and write the **total number of pages** on the front page. Good luck!

NAME:		
STUDENT NUMBER:		

Part I ("regular problems")

Problem 1 (8%)

A plane curve is given by

$$x = t^2,$$

$$y = 2t + 1,$$

where $t \in \mathbb{R}$.

- (a) Find the curvature $\kappa(t)$ of the curve for $t \in \mathbb{R}$.
- (b) Verify that P = (0,1) is a point on the curve and compute the curvature of the curve at this point.

Problem 2 (10%)

(a) Find the general solution of the differential equation

$$y'' - 2y' + 10y = 0.$$

(b) Find the general solution of the differential equation

$$y'' - 2y' + 10y = -13e^{3t}.$$

Problem 3 (7%)

Find the Taylor polynomial of degree 2 for the function

$$f(x) = 2 + x^2 + \arctan(x)$$

about the point a = 0.

Problem 4 (8%)

Consider the function

$$f(x,y) = \frac{x}{x^2 + y^2}.$$

- (a) Find the domain of f.
- (b) Sketch the level curve with the equation f(x, y) = 1.

Problem 5 (12%)

A function is defined by

$$f(x, y) = x \sin(y) - y.$$

- (a) Find the gradient vector $\nabla f(x, y)$.
- (b) Compute the directional derivative of f at the point $P=(1,\frac{\pi}{2})$ in the direction of the unit vector

$$\mathbf{u} = \frac{\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}.$$

(c) In which direction is the directional derivative of f at $P=(1,\frac{\pi}{2})$ maximal? (Specify a unit vector). What is the maximal value of the directional derivative of f at the point P?

Problem 6 (12%)

A plane region is given by

$$\mathcal{R} = \{(x, y) : 0 \le x \le 1, x^2 - 1 \le y \le -x + 2\}.$$

- (a) Sketch the region \mathcal{R} .
- (b) Evaluate the double integral

$$\iint_{\mathcal{R}} 2xy \, dA.$$

Problem 7 (7%)

Find all complex roots of the polynomial

$$z^2 + (1 - 4i)z - 3 - 3i$$
.

Problem 8 (8%)

The surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0 with

$$F(x, y, z) = xy^2 + e^y - xz^3$$
.

- (a) Verify that the point P = (1, 0, 1) lies on the surface \mathcal{F} .
- (b) Find an equation of the tangent plane to the surface \mathcal{F} at the point P = (1,0,1).

Part II ("multiple choice" problems)

Problem 9 (10%).

Answer the following 5 True/False problems:

$$\cos(\alpha + \beta) = \cos(\alpha) + \cos(\beta)$$

holds for all $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$.

П	True
L	Hue

b. For the function $f(t) = e^{(1-i)t}$, where $t \in \mathbb{R}$, one has

$$f'(t) = (1-i)e^{(1-i)t}$$
.

☐ True

c. Let $D = \{(x, y) : x^2 + y^2 \le 1\}$ and let f be the function

$$f(x, y) = x^3 y + \cos(2x)$$

defined on D. Then f attains an absolute maximum value at some point of D.

True

d. It holds true that

$$e^{6\pi i} = -1.$$

☐ True

☐ False

e. For all complex numbers $z \neq 0$ one has

$$\frac{z\overline{z}}{|z|^2} = 1.$$

☐ True

☐ False

Remark. In problems 10 and 11 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

Problem 10 (7%)

A solid body \mathcal{T} covers precisely the region in space given by

$$\{(x, y, z): (x, y) \in \mathcal{R}, -x \le z \le y^2 + 3x\}$$

where

$$\mathcal{R} = \{(x, y): -2 \le y \le 2, y^2 \le x \le 4\}.$$

The density function of \mathcal{T} is $\delta(x, y, z) = 2x + z^2$. Mark all correct statements below. Remark: **Do not** evaluate the integrals.

- The mass of \mathcal{T} can be calculated as follows: $m = \int_{v^2}^4 \int_{-2}^2 \int_{-x}^{y^2 + 3x} (2x + z^2) \, dz \, dy \, dx$.
- The mass of \mathcal{T} can be calculated as follows: $m = \int_{-2}^{2} \int_{y^2}^{4} \int_{-x}^{y^2 + 3x} (2x + z^2) \, dz \, dx \, dy$.
- The mass of \mathcal{T} can be calculated as follows: $m = \int_0^4 \int_{-\sqrt{x}}^{\sqrt{x}} \int_{-x}^{y^2 + 3x} (2x + z^2) \, dz \, dy \, dx$.
- The volume of \mathcal{F} can be calculated as follows: $V = \int_{\gamma^2}^4 \int_{-2}^2 \int_{-x}^{2x+z^2} dz dy dx$.
- The volume of \mathcal{T} can be calculated as follows: $V = \int_{-2}^{2} \int_{y^2}^{4} \int_{-x}^{y^2+3x} dz dx dy$.

Problem 11 (6%)

Let p(z) be a complex polynomial of degree 6. Suppose that p(z) has real coefficients. Mark all correct statements below.

- p(z) will always have 6 different complex roots.
- There will always exist a degree 2 polynomial $q_1(z)$ with real coefficients and a degree 4 polynomial $q_2(z)$ such that $p(z) = q_1(z)q_2(z)$.
- \bigcap p(z) will always have 6 complex roots, counting multiplicity.

Problem 12 (5%)

The figure below shows the graph of the function $r = f(\theta)$ displayed in polar coordinates.

Which one of the below expressions of f along with domain indication for θ corresponds to the figure above?

$$f(\theta) = 2 - \cos(3\theta), \ 0 \le \theta \le \frac{\pi}{3}$$