Exam in Calculus<br>Monday 8 June 2015<br>First Year at the Faculty of Engineering and Science<br>and<br>The Faculty of Medicine

The present exam set consists of 7 numbered pages with 12 problems.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
The listed percentages specify the weightings of the individual problems in the assessment of the exam.

The exam set has two independent parts.

- Part I contains "regular problems". Here it is important that you explain the idea behind the solution, and that you provide relevant intermediate results.
- Part II consists of "multiple choice" problems. The answers of Part II must be given on these sheets of paper.

Remember to write your full name and student number on each page of your solutions. Number each page and write the total number of pages on the front page. Good luck!

NAME:

STUDENT NUMBER:

## Part I ("regular problems")

## Problem 1 (8\%)

A plane curve is given by

$$
\begin{aligned}
& x=t^{2} \\
& y=2 t+1,
\end{aligned}
$$

where $t \in \mathbb{R}$.
(a) Find the curvature $\kappa(t)$ of the curve for $t \in \mathbb{R}$.
(b) Verify that $P=(0,1)$ is a point on the curve and compute the curvature of the curve at this point.

## Problem 2 (10\%)

(a) Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0 .
$$

(b) Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=-13 e^{3 t} .
$$

## Problem 3 (7\%)

Find the Taylor polynomial of degree 2 for the function

$$
f(x)=2+x^{2}+\arctan (x)
$$

about the point $a=0$.

## Problem 4 (8\%)

Consider the function

$$
f(x, y)=\frac{x}{x^{2}+y^{2}} .
$$

(a) Find the domain of $f$.
(b) Sketch the level curve with the equation $f(x, y)=1$.

## Problem 5 (12\%)

A function is defined by

$$
f(x, y)=x \sin (y)-y .
$$

(a) Find the gradient vector $\nabla f(x, y)$.
(b) Compute the directional derivative of $f$ at the point $P=\left(1, \frac{\pi}{2}\right)$ in the direction of the unit vector

$$
\mathbf{u}=\frac{\sqrt{2}}{2} \mathbf{i}+\frac{\sqrt{2}}{2} \mathbf{j} .
$$

(c) In which direction is the directional derivative of $f$ at $P=\left(1, \frac{\pi}{2}\right)$ maximal? (Specify a unit vector). What is the maximal value of the directional derivative of $f$ at the point $P$ ?

## Problem 6 (12\%)

A plane region is given by

$$
\mathscr{R}=\left\{(x, y): \quad 0 \leq x \leq 1, \quad x^{2}-1 \leq y \leq-x+2\right\} .
$$

(a) Sketch the region $\mathscr{R}$.
(b) Evaluate the double integral

$$
\iint_{\mathscr{R}} 2 x y d A .
$$

## Problem 7 (7\%)

Find all complex roots of the polynomial

$$
z^{2}+(1-4 i) z-3-3 i .
$$

## Problem 8 (8\%)

The surface $\mathscr{F}$ in space is determined by the equation $F(x, y, z)=0$ with

$$
F(x, y, z)=x y^{2}+e^{y}-x z^{3} .
$$

(a) Verify that the point $P=(1,0,1)$ lies on the surface $\mathscr{F}$.
(b) Find an equation of the tangent plane to the surface $\mathscr{F}$ at the point $P=(1,0,1)$.

## Part II ("multiple choice" problems)

## Problem 9 (10\%).

Answer the following 5 True/False problems:
a. The identity

$$
\cos (\alpha+\beta)=\cos (\alpha)+\cos (\beta)
$$

holds for all $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$.
True
b. For the function $f(t)=e^{(1-i) t}$, where $t \in \mathbb{R}$, one has

$$
f^{\prime}(t)=(1-i) e^{(1-i) t} .
$$

c. Let $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and let $f$ be the function

$$
f(x, y)=x^{3} y+\cos (2 x)
$$

defined on $D$. Then $f$ attains an absolute maximum value at some point of $D$.
$\square$ True
False
d. It holds true that

$$
e^{6 \pi i}=-1
$$False

e. For all complex numbers $z \neq 0$ one has

$$
\begin{aligned}
\frac{z \bar{z}}{|z|^{2}}=1 \\
\quad \square \text { False }
\end{aligned}
$$

Remark. In problems 10 and 11 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

## Problem 10 (7\%)

A solid body $\mathscr{T}$ covers precisely the region in space given by

$$
\left\{(x, y, z): \quad(x, y) \in \mathscr{R}, \quad-x \leq z \leq y^{2}+3 x\right\}
$$

where

$$
\mathscr{R}=\left\{(x, y): \quad-2 \leq y \leq 2, \quad y^{2} \leq x \leq 4\right\} .
$$

The density function of $\mathscr{T}$ is $\delta(x, y, z)=2 x+z^{2}$. Mark all correct statements below. Remark: Do not evaluate the integrals.
$\square$ The mass of $\mathscr{T}$ can be calculated as follows: $m=\int_{y^{2}}^{4} \int_{-2}^{2} \int_{-x}^{y^{2}+3 x}\left(2 x+z^{2}\right) d z d y d x$.
$\square$ The mass of $\mathscr{T}$ can be calculated as follows: $m=\int_{-2}^{2} \int_{y^{2}}^{4} \int_{-x}^{y^{2}+3 x}\left(2 x+z^{2}\right) d z d x d y$.
$\square$ The mass of $\mathscr{T}$ can be calculated as follows: $m=\int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{-x}^{y^{2}+3 x}\left(2 x+z^{2}\right) d z d y d x$.
$\square$ The volume of $\mathscr{T}$ can be calculated as follows: $V=\int_{y^{2}}^{4} \int_{-2}^{2} \int_{-x}^{2 x+z^{2}} d z d y d x$.
$\square$ The volume of $\mathscr{T}$ can be calculated as follows: $V=\int_{-2}^{2} \int_{y^{2}}^{4} \int_{-x}^{y^{2}+3 x} d z d x d y$.

## Problem 11 (6\%)

Let $p(z)$ be a complex polynomial of degree 6 . Suppose that $p(z)$ has real coefficients. Mark all correct statements below.
$\square p(z)$ will always have 6 different complex roots.
$\square p(z)$ will always have at least one real root.
$\square$ There will always exist a degree 2 polynomial $q_{1}(z)$ with real coefficients and a degree 4 polynomial $q_{2}(z)$ such that $p(z)=q_{1}(z) q_{2}(z)$.
$\square p(z)$ will always have 6 complex roots, counting multiplicity.

## Problem 12 (5\%)

The figure below shows the graph of the function $r=f(\theta)$ displayed in polar coordinates.


Which one of the below expressions of $f$ along with domain indication for $\theta$ corresponds to the figure above?
$\square f(\theta)=2-\cos (3 \theta), 0 \leq \theta \leq \frac{\pi}{3}$
$\square f(\theta)=1+\cos (6 \theta), 0 \leq \theta \leq 2 \pi$
$\square f(\theta)=1+\cos (3 \theta), 0 \leq \theta \leq 2 \pi$
$\square f(\theta)=1+\sin (6 \theta), 0 \leq \theta \leq \pi$
$\square f(\theta)=1+\sin (3 \theta), 0 \leq \theta \leq 2 \pi$
$\square f(\theta)=2-\sin (3 \theta), 0 \leq \theta \leq 2 \pi$

