Reexam in Calculus

19. august 2019

Exercise 1 (6 point)

A function is defined by

$$f(x, y, z) = \sin(x^2 + y^2 + z^2)$$

for real variables x, y and z.

(a)	(3 point)	The	domain	of de	finition	of f	consists	of all	the	points	(x, y, z)
	which sat	tisfy									

$$\prod z = 0$$

 \square all points are allowed

 \square none of the others

(b) (3 point) Which points
$$(x, y, z)$$
 belong to the level surface determined by $f(x, y, z) = 2$?

$$\square$$
 A sphere given by $x^2 + y^2 + z^2 = \sin^{-1}(2)$

$$\square$$
 A plane parallel with the xy-plane given by $z = \sin^{-1}(2)$

Exercise 2 (6 point)

A parametric curve in space is given by

$$\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$$

where the parameter t is an arbitrary real number.

(a) (2 point) What is the velocity vector of the curve?

$$\bigcap \langle \sin(t^2/2), \cos(t^2/2), t^2/2 \rangle$$

$$\square \langle \cos(t), \sin(t), 1 \rangle$$

$$\square$$
 none of the others

(b) (2 point) Which of the following vectors is the acceleration vector for t = 2π ?

(c)	(1 point) What is the spe	eed?						
(d)	(1 point) What is the len	gth of the curve from $t =$	0 to $t = 2$?					
	$\begin{array}{c} \square \ 0 \\ \square \ \sqrt{2} \end{array}$		☐ 1/2 ☐ none of the others					
Exe	rcise 3 (6 point)							
Thre	e complex numbers are g	iven by						
	$z_1 = 1 + 2i$	$z_1, z_2 = 4 - 2i \text{og} z_3 = 4 - 2i \text{og} z_3 = 2i - 2i \text{og} z_3 = 2i - 2i - 2i \text{og} z_3 = 2i - 2i$	$=i^{100}.$					
(a)	(2 point) What is $z_1 + z_2$	in polar form?						
	<u> </u>	$\Box 5e^{-i\pi/2}$	<u> </u>					
	$\Box 5e^{i\pi/2}$		none of the others					
(b)	(b) (2 point) What is $\frac{2z_1}{z_2}$ in the standard form $a + ib$?							
	$\Box 1+i$		<u> </u>					
	i	\Box $-i$	none of the others					
(c)	c) (2 point) What is the principal argument of z_3 ?							
	□ 0	π/2	Ππ					
	$\prod \pi/4$	$3\pi/4$	none of the others					

Hint to (c): The principal argument is a polar angle which belongs to the interval $]-\pi,\pi].$

Exercise 4 (10 point)

(a) (5	5 point) A h	omogeneous	second	order	differential	equation	is	given	by
--------	---------	-------	------------	--------	-------	--------------	----------	----	-------	----

$$y'' = -4y.$$

Below there are given a few functions where c_1 and c_2 are arbitrary real constants. Mark which expression represents the general solution to the differential equation.

$$y(t) = c_1 e^{-2t} + c_2 e^{2t}$$
 $y(t) = c_1 e^t + c_2 t$

$$y(t) = c_1 \cos(t) + c_2 \sin(t)$$
 $y(t) = c_1 \sin(2t) + c_2 \cos(2t)$

$$y(t) = (c_1 + c_2 t)e^{-2t}$$
 $y(t) = (c_1 + c_2 t)e^{2t}$

$$y(t) = c_1 + c_2$$
 none of the others

(b) (2 point) Which function $x_p(t)$ is a particular solution to the inhomogeneous differential equation

$$x''(t) = -4x(t) + 5e^t$$

among the following expressions:

(c) (3 point) Mark the solution x(t) to the initial value problem

$$x''(t) = -4x(t) + 5e^t$$
, $x(0) = 0$, $x'(0) = 0$

among the following expressions:

Exercise 5 (8 point)

Mark if the following statements are true or false:

(a) (2 point) $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$.

☐ True

(b) (2 point) $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^2 = i$.

☐ True ☐ False

(c) (2 point) If $f(x) = \sin(x)$ and $g(t) = \cos(t)$ then h(t) = f(g(t)) is differentiable and $h'(t) = -\sin(t)\cos(\cos(t))$.

☐ False

☐ True ☐ False

(d) (2 point) $e^{-\ln(x)} = \frac{1}{x}$.

☐ True ☐ False

Opgave 6 (7 point)

A domain R in the plane can be represented with the help of the inequality $x^2 + y^2 \le 1.$

(a) (1 point) Which of the following curves describes the boundary of \mathbb{R} ?

 \square a circle centred at (0,1) and with radius 1

 \square a circle centred at (0,0) and with radius 1

 \square a triangle with corners at the origin, (0,1) and (1,0)

a square with side length 1 and center at the origin

 \square none of the others

(b) (2 point) Which of the following inequalities characterize all the points of \mathcal{R} , where $(x, y) = (r \cos(\theta), r \sin(\theta))$?

 $\prod r \geq 1$, $0 \leq \theta \leq \pi$

 $0 \le r \le 1, \quad 0 \le \theta \le 2\pi$

(c) (4 point) The domain \mathcal{R} models a plate with mass density $\delta(x,y) = x^2 + 1$ y^2 . Which of the following expressions give the mass of the plate?

	$ 2\pi \int_0^1 r^2 dr$			$r^3 dr d\theta$		
	$ 2\pi \int_0^1 r^3 dr$					
			none of t	he others		
Opg	gave 7 (8 point)					
satisf	main \mathcal{R} in the plane consty the inequality $x^2 + y^2$: $y = x + y$.					
(a)	(4 point) Which of the fo	ollowing poir	nts are inner	critical points for f ?		
	$ \begin{array}{c} \langle 1, 0 \rangle \\ \langle 0, 0 \rangle \end{array} $			e no inner critical points the others		
(b)	(2 point) Mark whether the function f evaluated the function $g(\theta) = \cos(\theta)$	d on the bou	ndary of ${\cal R}$ t	takes the same values as		
	☐ True		☐ False			
(c)	(2 point) What is the ma	ximal value	of <i>f</i> ?			
	<u> </u>	<u> </u>		□ 3		
				none of the others		
Exe	rcise 8 (12 point)					
A su	rface ${\mathcal F}$ in space is detern	nined by the	equation $F(x)$	(x, y, z) = 0, where		
	F(:	$(x,y,z)=x^4-$	$+y^4-2z^2$			
(a)	(3 point) Which of the fol	llowing expr	essions gives	the gradient vector ∇F ?		
				-2>		
			\[\langle (0,0,0) \]			
			none of t	he others		
(b)	(b) (4 point) Which of the following equations represent the tangent plane to \mathcal{F} at the point $P = (1,1,1)$?					
	0 = x + y + z		y			
			2x - 2	none of the others		

(c) (5 point) From the eq $\partial z/\partial x$ at the point <i>P</i> ?	uation $F(x,y,z) =$	0, what is the partial derivative					
□ -1	□ -2	<u> </u>					
<u> </u>		none of the others					
Exercise 9 (12 point)							
A function is given by	$f(x,y) = \sin(2x + \frac{1}{2})$	- y),					
where $x \ge 0$ and $y \ge 0$.							
(a) (2 point) Mark whether never be equal to zero		tement is true or false: $f(x,y)$ can					
☐ True		False					
<u>=</u>	b) (2 point) Mark whether the following statement is true or false: $f(x,0)$ is an increasing function of x .						
☐ True		False					
(c) (4 point) What is the oin the direction given		we $D_{\mathbf{u}}f(P)$ at the point $P=(0,0)$ $\mathbf{u}=\langle 0,1\rangle ?$					
□ 0	□ 3	□ 4					
<u> </u>	□ 2	none of the others					
		vectors point in the direction in the direction ${\bf v}$ for which $D_{\bf v}f(P)$					
$\left[\left\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\rangle \right]$	$\left[\left\langle \frac{2\sqrt{5}}{5}, -\frac{1}{\sqrt{5}} \right\rangle \right]$	$\left[\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \right]$					
$\left[\left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle \right]$		none of the others					
Exercise 10 (9 point)							
A function is given by	$f(x) = \cos(x^2)$)					
for all real numbers x .							
(a) (5 point) Mark the co	rect expression for	f''(x) (i.e. f twice differentiated)					

	ollowing exp	none of t	$-x^2 \cos(x^2)$ he others resents the second order			
		$c^2/2$				
	□ 1		I note of the others			
Exercise 11 (11 point)						
A curve in the plane is given	by					
	$x(t) = t^2,$ $y(t) = \sin \theta$					
for all real numbers t .						
(a) (2 point) For which valu origin?	e of the parar	meter t does t	he curve go through the			
$\begin{array}{c c} \pi \\ \hline 2\pi \end{array}$	$\begin{array}{c} \boxed{} \ 3\pi \\ \boxed{} \ 4\pi \end{array}$		☐ 0 ☐ none of the others			
(b) (4 point) What is the value of the speed when $t = 0$?						
□ 0 □ 1						
(c) (5 point) What is the acc	celeration vec	tor at the ori	gin?			
$ \begin{array}{c} \langle 0, 0 \rangle \\ \langle 1, 0 \rangle \end{array} $	$ \begin{array}{c} \langle 0, 1 \rangle \\ \langle 1, 1 \rangle \end{array} $	·				
Exercise 12 (5 point)						
Consider the following initial value problem						
y'(x) = (x+1) y(x), y(0) = 1.						
(a) (3 point) Assume that y solves the above equation and define						
	$f(x) = \ln(y(x)).$					

Which initial value problem solves f?

- (b) (2 point) What is y(x)?
 - \Box 1 + x
 - $\Box e^x - 1$ none of the others