Retake exam in Calculus

19. august 2019

Exercise 1 (6 point)

A function is defined by

$$f(x, y, z) = \sin(x^2 + y^2 + z^2)$$

for real variables *x*, *y* and *z*.

(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy

$\Box z = 0$	🗹 all points are allowed
$\prod_{n=1}^{\infty} x_n^2 + y_n^2 + z_n^2 > 0$	$\Box xyz \neq 0$
$ x^2 + y^2 + z^2 < 0 $	none of the others

- (b) (3 point) Which points (x, y, z) belong to the level surface determined by f(x, y, z) = 2?
 - A sphere given by $x^2 + y^2 + z^2 = \sin^{-1}(2)$
 - ☐ The xy-plane

There are no such points

A plane parallel with the xy-plane given by $z = \sin^{-1}(2)$

none of the others

Exercise 2 (6 point)

A parametric curve in space is given by

$$\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$$

where the parameter *t* is an arbitrary real number.

(a) (2 point) What is the velocity vector of the curve?

- (b) (2 point) Which of the following vectors is the acceleration vector for $t = 2\pi$?

$\bigtriangledown \langle 0, -1, 0 \rangle$ $\Box \langle 0, 1, 0 \rangle$	$\begin{bmatrix} & \langle 1, & 0, & 0 \rangle \\ & \langle 1, & 1, & 1 \rangle \end{bmatrix}$	$ \left \begin{array}{c} \langle 0, 1, 1/2 \rangle \\ \\ \end{array} \right $ none of the others
(c) (1 point) What is the spe	eed?	
$\Box \sqrt{\sin(t) + \cos(t) + t}$ $\Box \sqrt{1 + t^2}$	$\begin{array}{c} \boxed{} 2\\ \boxed{} \sqrt{2} \end{array}$	$ \ \ \ \ \ \ \ \ \ \ \ \ \$
(d) (1 point) What is the len	gth of the curve from $t =$	0 to $t = 2$?
0	$\checkmark 2\sqrt{2}$	1/2
$\Box \sqrt{2}$	$\Box 4\sqrt{2}$	none of the others
Exercise 3 (6 point)		
Three complex numbers are g	iven by	
$z_1 = 1 + 2i$	$z_2 = 4 - 2i$ og $z_3 =$	$= i^{100}$.
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$	in polar form? $z_2 = 4 - 2i$ og $z_3 =$	$= i^{100}$.
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$ $\Box 1$	in polar form? $\Box 5e^{-i\pi/2}$	= i ¹⁰⁰ . ☑ 5
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$ $\Box 1$ $\Box 5e^{i\pi/2}$	in polar form? $ z_2 = 4 - 2i \text{og} z_3 = 0$ in polar form? $ z_3 = 0$ $ z_3 = 0$ $ z_3 = 0$ $ z_3 = 0$	<i>i</i> ¹⁰⁰ . ✓ 5 □ none of the others
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$ $\Box \ 1$ $\Box \ 5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_1}{z_2}$ in t	in polar form? $ \begin{array}{c} z_2 = 4 - 2i \text{og} z_3 = 0 \\ 1 \text{ in polar form} \\ \hline 5e^{-i\pi/2} \\ \hline \sqrt{5} \\ 1 \text{ whe standard form } a + ib? \end{array} $	<i>i</i> ¹⁰⁰ . ✓ 5 ☐ none of the others
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$ $\Box 1$ $\Box 5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_1}{z_2}$ in the second	in polar form? $ \begin{array}{c} z_2 = 4 - 2i \text{og} z_3 = in \text{ polar form}? \\ \hline 5e^{-i\pi/2} \\ \hline \sqrt{5} \\ \end{array}$ he standard form $a + ib$? $ \begin{array}{c} -1 - i \end{array}$	<i>i</i> ¹⁰⁰ . 5 □ none of the others □ 5
$z_{1} = 1 + 2i$ (a) (2 point) What is $z_{1} + z_{2}$ $\Box 1$ $\Box 5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_{1}}{z_{2}}$ in the image of iteration is the image of iteration.	in polar form? $\begin{bmatrix} 5e^{-i\pi/2} \\ \sqrt{5} \end{bmatrix}$ he standard form $a + ib$? $\begin{bmatrix} -1 - i \\ -i \end{bmatrix}$	 <i>i</i>¹⁰⁰. <i>5</i> □ none of the others □ 5 □ none of the others
$z_{1} = 1 + 2i$ (a) (2 point) What is $z_{1} + z_{2}$ $\Box 1$ $\Box 5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_{1}}{z_{2}}$ in the constant of i (c) (2 point) What is the prime	in polar form? $\begin{bmatrix} 5e^{-i\pi/2} \\ \sqrt{5} \end{bmatrix}$ he standard form $a + ib$? $\begin{bmatrix} -1 - i \\ -i \end{bmatrix}$ ncipal argument of z_3 ?	 <i>i</i>¹⁰⁰. <i>5</i> □ none of the others □ 5 □ none of the others
$z_{1} = 1 + 2i$ (a) (2 point) What is $z_{1} + z_{2}$ $\Box 1$ $\Box 5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_{1}}{z_{2}}$ in the prime is in the prime is prime prime is prime pr	in polar form? $\begin{bmatrix} 5e^{-i\pi/2} \\ \sqrt{5} \end{bmatrix}$ he standard form $a + ib$? $\begin{bmatrix} -1 - i \\ -i \end{bmatrix}$ ncipal argument of z_3 ? $\begin{bmatrix} \pi/2 \end{bmatrix}$	i^{100} . $\boxed{5}$ $\boxed{100}$ none of the others $\boxed{5}$ $\boxed{100}$ none of the others $\boxed{100}$ π

Hint to (c): The principal argument is a polar angle which belongs to the interval $] - \pi, \pi]$.

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$y'' = -4y$$

Below there are given a few functions where c_1 and c_2 are arbitrary real constants. Mark which expression represents the general solution to the differential equation.

- $\begin{array}{c} \boxed{ y(t) = c_1 e^{-2t} + c_2 e^{2t} } \\ \boxed{ y(t) = c_1 \cos(t) + c_2 \sin(t) } \\ \boxed{ y(t) = (c_1 + c_2 t) e^{-2t} } \\ \boxed{ y(t) = c_1 + c_2 } \\ \end{array} \begin{array}{c} \boxed{ y(t) = c_1 e^t + c_2 t } \\ \boxed{ y(t) = c_1 \sin(2t) + c_2 \cos(2t) } \\ \boxed{ y(t) = (c_1 + c_2 t) e^{2t} } \\ \boxed{ y(t) = c_1 + c_2 } \\ \end{array} \begin{array}{c} \boxed{ y(t) = (c_1 + c_2 t) e^{2t} } \\ \boxed{ y(t) = c_1 + c_2 } \\ \end{array} \end{array}$
- (b) (2 point) Which function $x_p(t)$ is a particular solution to the inhomogeneous differential equation

$$x''(t) = -4x(t) + 5e^t$$

among the following expressions:

- $\begin{array}{c} \square \ x_p(t) = e^{2t} \\ \square \ x_p(t) = e^{-2t} \\ \hline \ x_p(t) = e^t \end{array} \qquad \begin{array}{c} \square \ x_p(t) = e^{-t} \\ \square \ x_p(t) = te^t \\ \hline \ \square \ none \text{ of the others} \end{array}$
- (c) (3 point) Mark the solution x(t) to the initial value problem

$$x''(t) = -4x(t) + 5e^t$$
, $x(0) = 0$, $x'(0) = 0$,

among the following expressions:

 $\begin{array}{c} \boxed{\ } x(t) = \sin(t) - t\cos(t) \\ \boxed{\ } x(t) = -\sin(t) + te^t \\ \boxed{\ } x(t) = \sin(2t)/2 + \cos(2t) - e^t \\ \boxed{\ } x(t) = \sin(2t)/2 + \cos(2t) - e^t \\ \end{array} \begin{array}{c} \boxed{\ } x(t) = -\frac{1}{2} \\ \boxed{\ } x(t) = t - te^{2t} \\ \boxed{\ } x(t) = t$

Exercise 5 (8 point)

Mark if the following statements are true or false:

Opgave 6 (7 point)

A domain \mathcal{R} in the plane can be represented with the help of the inequality $x^2 + y^2 \leq 1$.

- (a) (1 point) Which of the following curves describes the boundary of \mathcal{R} ?
 - \Box a circle centred at (0, 1) and with radius 1
 - \checkmark a circle centred at (0,0) and with radius 1
 - \Box a triangle with corners at the origin, (0, 1) and (1, 0)
 - a square with side length 1 and center at the origin
 - none of the others
- (b) (2 point) Which of the following inequalities characterize all the points of \mathcal{R} , where $(x, y) = (r \cos(\theta), r \sin(\theta))$?
- (c) (4 point) The domain \mathcal{R} models a plate with mass density $\delta(x, y) = x^2 + y^2$. Which of the following expressions give the mass of the plate?

$\Box \ 2\pi \int_0^1 r^2 dr$	$\Box \int_0^{\pi} \int_0^{\sin(\theta)} r^3 dr \ d\theta$
$\boxed{2\pi} 2\pi \int_0^1 r^3 dr$	$\prod_{n=1}^{\infty} \int_{0}^{1} r^{2} dr$
$\prod \pi \int_0^1 r^3 dr$	none of the others

Opgave 7 (8 point)

A domain \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy the inequality $x^2 + y^2 \le 1$. The function f is defined on \mathcal{R} and given by f(x, y) = x + y.

(a) (4 point) Which of the following points are inner critical points for *f*?

$\left[\begin{array}{c} \langle 0,-1 \rangle \end{array} \right]$	\Box $\langle -1,0 \rangle$
$ \begin{array}{c} \square & \langle 1, 0 \rangle \\ \square & \langle 0, 0 \rangle \end{array} $	There are no inner critical pointsnone of the others

(b) (2 point) Mark whether the following statement is true or false:

The function *f* evaluated on the boundary of \mathcal{R} takes the same values as the function $g(\theta) = \cos(\theta) + \sin(\theta)$, where $\theta \in [0, 2\pi]$.

- (c) (2 point) What is the maximal value of *f*?
 - \Box 1 \Box 2 \Box 3 \bigvee $\sqrt{2}$ \Box $2\sqrt{2}$ \Box none of the others

Exercise 8 (12 point)

A surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0, where

$$F(x, y, z) = x^4 + y^4 - 2z^2$$

(a) (3 point) Which of the following expressions gives the gradient vector ∇F ?

$\Box \langle 4x, 4y, -4z \rangle$	$\Box \langle x^3, y^3, -2 \rangle$
$\Box \langle 4x^2, 4y^2, -4z^2 \rangle$	\Box $\langle 0, 0, 0 \rangle$
$\checkmark \langle 4x^3, 4y^3, -4z \rangle$	none of the others

- (b) (4 point) Which of the following equations represent the tangent plane to \mathcal{F} at the point P = (1, 1, 1)?
 - \Box 0 = x + y + z \Box z = x + y \Box z = 2x y \bigvee x + y z = 1 \Box z = y + 2x 2 \Box none of the others

- (c) (5 point) From the equation F(x, y, z) = 0, what is the partial derivative $\frac{\partial z}{\partial x}$ at the point *P*?
 - $\begin{array}{c|c} -1 & \hline & -2 & \hline & 2 \\ \hline & 0 & \hline & 1 & \hline & none of the others \end{array}$

Exercise 9 (12 point)

A function is given by

$$f(x,y) = \sin(2x+y),$$

where $x \ge 0$ and $y \ge 0$.

- (a) (2 point) Mark whether the following statement is true or false: f(x, y) can never be equal to zero.
- (b) (2 point) Mark whether the following statement is true or false: f(x, 0) is an increasing function of x.
 - True

🖌 False

- (c) (4 point) What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P = (0,0) in the direction given by the unit vector $\mathbf{u} = \langle 0, 1 \rangle$?
- (d) (4 point) Which of the following unit vectors point in the direction in which *f* grows fastest at the point *P* (the direction **v** for which $D_{\mathbf{v}}f(P)$ is largest)?
 - $\begin{array}{c|c} & \langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \rangle & \qquad & \square \ \langle \frac{2\sqrt{5}}{5}, -\frac{1}{\sqrt{5}} \rangle & \qquad & \square \ \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle \\ \hline & \langle 1, 0 \rangle & \qquad & \swarrow \ \langle \frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5} \rangle & \qquad & \square \ \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle \\ \hline & \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle & \qquad & \square \ \langle 0, 1 \rangle & \qquad & \square \ \text{none of the others} \end{array}$

Exercise 10 (9 point)

A function is given by

$$f(x) = \cos(x^2)$$

for all real numbers *x*.

(a) (5 point) Mark the correct expression for f''(x) (i.e. *f* twice differentiated)

- $\begin{array}{c|c} -4\cos(x^2) & & & & \\ \hline & -x^4\cos(x^2) & & & \\ \hline & -2\sin(x^2) 4x^2\cos(x^2) & & & \\ \hline & & & \\ \end{array} \begin{array}{c} 2\cos(2x) \\ \hline & 2\sin(x^2) x^2\cos(x^2) \\ \hline & & \\ \hline & & \\ \end{array} \begin{array}{c} none \text{ of the others} \end{array}$
- (b) (4 point) Which of the following expressions represents the second order Taylor polynomial for f with the expansion point x = 0?
 - \Box 1 + x + x² \Box 1 x + x²/2 \Box 2x + x² \Box 1 + x + x²/2 \Box 1 \Box none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$\begin{aligned} x(t) &= t^2, \\ y(t) &= \sin(t^3) \end{aligned}$$

for all real numbers *t*.

- (a) (2 point) For which value of the parameter *t* does the curve go through the origin?
 - $\begin{array}{c|c} \pi & & & & & \\ \hline & \pi & & & \\ 2\pi & & & & \\ \hline & 4\pi & & \\ \hline & & & \\ none of the others \end{array}$

(b) (4 point) What is the value of the speed when t = 0?

 \checkmark 0 $\square \sqrt{2}$ $\square \sqrt{5}$ \square 1 $\square \sqrt{3}$ \square none of the others

(c) (5 point) What is the acceleration vector at the origin?

\Box $\langle 0, 0 \rangle$	\Box $\langle 0,1 \rangle$	\checkmark $\langle 2, 0 \rangle$
\Box $\langle 1,0 \rangle$	\Box $\langle 1,1 \rangle$	none of the others

Exercise 12 (5 point)

Consider the following initial value problem

$$y'(x) = (x+1) y(x), \quad y(0) = 1.$$

(a) (3 point) Assume that *y* solves the above equation and define

 $f(x) = \ln(y(x)).$

Which initial value problem solves *f*?

Side 7 af 8

	f'(x) = x + 1, f(0) = 1
	f'(x) = -x - 1, f(0) = 1
\checkmark	f'(x) = x + 1, f(0) = 0

 $\Box f'(x) = e^x, \quad f(0) = 0$ $\Box f'(x) = 1/(x+1), \quad f(0) = 0$ $\Box \text{ none of the others}$

(b) (2 point) What is y(x)?

$$\Box$$
 1 + x \Box 1/(x + 1) \Box ln(1 + x + x²/2) \Box $e^{x} - 1$ \Box $e^{x+x^{2}/2}$ \Box none of the others