Reexam in Calculus

20. february 2019

Exercise 1 (6 point)

A function is defined by

$$f(x,y) = 1 + \frac{y^2}{x^2}$$

for real variables *x* and *y*.

- (a) (3 point) The domain of definition of f consists of all points (x, y) which obey
 - $\prod x < 0$

- $\prod y \neq 0$
- (b) (3 point) What is the level set f(x, y) = 2?
 - \square A parabola $x = y^2 + 1$
 - \prod A parabola $x = y^2 1$
 - ☐ A circle with center at origin and radius 1
 - A circle with center at origin and radius 2
 - \square Two straight lines $x = \pm y$ without the origin.

Exercise 2 (6 point)

A parametric curve in space is given by

$$\mathbf{r}(t) = \left\langle t, -t^2, e^t \right\rangle$$

where the parameter t can be any real number.

- (a) (3 point) What is the velocity?

- (b) (3 point) Which of the following vectors represent the acceleration vector at t = 0?

Exercise 3 (6 point)

Three complex numbers are given by

$$z_1 = 1 - i$$
, $z_2 = 2i^2$ og $z_3 = 1 + i$.

(a) (3 point) What is $z_1 + z_2$ in polar form?

 \Box 0

 $\bigcap -2e^{i\pi/4}$

 $\Box 2e^{i\pi/4}$

 $\prod \sqrt{2}e^{\frac{5\pi}{4}i}$

(b) (3 point) What is $\frac{z_1}{z_3}$ in standard form?

 $\prod 1$

 $\prod i$

 \Box -2i

 $\prod -i$

 \Box 2i

 $\frac{-}{1}i/2$

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$y''=2y'.$$

Below there are given several functions where c_1 and c_2 are arbitrary real constants. Mark the expression which corresponds to the general solution of the differential equation.

 $y(t) = c_1 \cos(t) + c_2 \sin(t)$

 $y(t) = c_1 \sin(2t) + c_2 \cos(2t)$

 $y(t) = c_1 + c_2 t$

 $y(t) = c_1 t^2 + c_2 t$

 $y(t) = c_1 + c_2 t^2$

 $y(t) = c_1 + c_2 e^t$

(b) (5 point) Mark the solution x(t) to the inhomogeneous differential equation

$$x''(t) = 2x'(t) + 1$$
, $x(0) = 0$, $x'(0) = 0$,

among the following expressions:

Exercise 5 (8 point)

Answer whether the following statements are true or false.

(a)	(2 point) The velocity vector and the unit tangent vector have always the same length.					
	☐ True		☐ False			
(b)	(2 point) When a point moves on a circle, the curvature is constant.					
	☐ True		☐ False			
(c)) (2 point) The product of any two real functions which are both differentiable at a point, is also differentiable at that point.					
	☐ True		False			
(d)	d) (2 point) The function $f(x) = \sin(x)$ where $0 \le x \le 2\pi$, has an inverse function.					
	☐ True		☐ False			
Exercise 6 (7 point)						
A domain \mathcal{R} in the plane can be represented with the help of the inequalities $4 \le x^2 + y^2 \le 9$ and $x \le y$.						
(a)	(a) (3 point) Which of the following inequalities show, that a point with coordinates $(x, y) = (r \cos(\theta), r \sin(\theta))$ belongs to \mathbb{R} ?					
	Γ $r \ge 2$, $0 \le \theta \le \pi$			$ heta=\pi/2$		
		$\leq 5\pi/4$	$\Gamma r \leq 9$			
		$\leq 5\pi/4$	$ 2 \le r \le 3 $			
(b) (4 point) What is the area of the domain?						
		$3\pi/2$		$5\pi/2$		
	$\prod \pi$	2π		3π		

Exercise 7 (8 point)

A region \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy

$$\sqrt{x^2 + y^2} \le 2.$$

A function *f* is defined on \mathbb{R} and is given by $f(x,y) = x^2 + 2y^2$.

- (a) (4 point) Which of the following points is an inner critical point for *f*?

- $\lceil \langle 1, 1 \rangle \rceil$
- $\bigcap \langle -1, -1 \rangle$
- (b) (4 point) What is the maximum value of *f*?
 - $\prod 2$

 $\prod 6$

 $\prod 10$

 \Box 4

 \square 8

 $\prod 12$

Exercise 8 (12 point)

A surface \mathcal{F} in space is determined by the equation F(x,y,z) = 0, where

$$F(x, y, z) = x^2 + y^2 - 2z^2.$$

- (a) (6 point) Which of the following equations correspond to the tangent plane to \mathcal{F} at the point P = (1, 1, 1)?

- (b) (6 point) From the equation F(x,y,z) = 0, what is the partial derivative $\partial z/\partial y$ at the point *P*?

- $\prod 3/5$

 \Box 0

 $\prod 1/2$

 $\prod 4$

Exercise 9 (12 point)

A function is given by $f(x,y) = \ln(e^x + y),$ where x > -1 and y > 0. (a) (2 point) Mark whether the following statement is true or false: f(x,y) can never be less than zero. ☐ True ☐ False (b) (2 point) Mark whether the following statement is true or false: f(x,y) is always less than 100. ☐ True ☐ False (c) (4 point) What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P=(0,1)and direction given by the unit vector $\mathbf{u} = \langle 1, 0 \rangle$? $\prod 4$ \square 1 $\prod 2$ (d) (4 point) Which of the following unit vectors point in the direction in which f grows fastest starting from P (the direction v for which $D_{\mathbf{v}}f(P)$ is maximal)?

 $\left[\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right]$

Exercise 10 (9 point)

Α	function	is	oiven	hv
$\boldsymbol{\Lambda}$	Turicuon	15	given	υy

$$f(x) = x^2 + \sin(2x)$$

for all real numbers x.

(a) (5 point) Mark the correct expression for f'''(x) (i.e. the third order derivative of f)

 $\bigcap \cos(2x)$

 $\bigcap 8\cos(2x)$

 \bigcap 8 sin(2x)

 \bigcap $-2\cos(2x)$

 $\bigcap -8\sin(2x)$

(b) (4 point) Which one of the following expressions gives the third order Taylor polynomial for f when the developing point is a = 0?

Exercise 11 (11 point)

A curve in the plane is given by

 $x(t) = \cos(2t)$,

 $y(t) = \sin(t)$

for all real numbers t.

(a) (2 point) For which positive value of the parameter t does the curve get back to the point P = (1,0) for the first time? (Note that the curve is at Pwhen t = 0.)

 $\prod \pi/8$

 $\prod \pi/4 \qquad \prod \pi/2 \qquad \prod \pi$

 $\prod 2\pi$

(b) (5 point) What is the curvature at *P*?

 $\prod 1$

 $\prod 2$

 \prod 3

 \Box 4

 $\prod 5$

(c) (4 point) What is the value of the velocity when $t = \pi$?

 \Box 0

 $\prod 4$

 \Box 1

 $\prod 3$

 $\prod 5$

Opgave 12 (5 point)

The figure below shows the graph of a function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi,$$

expressed in polar coordinates. The graph represents a cardioid.

One of the expressions below corresponds to the figure. Which one?

$$f(\theta) = \frac{2 - \sin(\theta)}{2}$$