Reexam in Calculus

20. february 2019

Exercise 1 (6 point)

A function is defined by

$$
f(x, y)=1+\frac{y^{2}}{x^{2}}
$$

for real variables x and y.
(a) (3 point) The domain of definition of f consists of all points (x, y) which obey
$\square x<0$
$\square x \neq 0$
$\square y x \neq 0$
$\square y \neq 0$
$\square x \neq 0$ og $y>0$
$\square y^{2}=x^{2}$
(b) (3 point) What is the level set $f(x, y)=2$?
\square A parabola $x=y^{2}+1$
\square A parabola $x=y^{2}-1$
\square A circle with center at origin and radius 1
\square A circle with center at origin and radius 2
\square Two straight lines $x= \pm y$ without the origin.

Exercise 2 (6 point)

A parametric curve in space is given by

$$
\mathbf{r}(t)=\left\langle t,-t^{2}, e^{t}\right\rangle
$$

where the parameter t can be any real number.
(a) (3 point) What is the velocity?
$\square\left\langle 1,-2 t, e^{t}\right\rangle$
$\square \sqrt{5+e}$
$\square \sqrt{1+4 t^{2}+e^{2 t}}$
$\square \sqrt{1-2 t+e^{t}}$
$\square \sqrt{4+t^{2}}$
$\square \sqrt{1-4 t^{2}+e^{2 t}}$
(b) (3 point) Which of the following vectors represent the acceleration vector at $t=0$?
$\square\langle 0,-1,0\rangle$
$\square\langle 0,-2,0\rangle$
$\square\langle 0,-2,1\rangle$
$\square\langle 0,-4,0\rangle$
$\square\langle-4,0,1\rangle$
$\square\langle 0,-2, e\rangle$

Exercise 3 (6 point)

Three complex numbers are given by

$$
z_{1}=1-i, \quad z_{2}=2 i^{2} \quad \text { og } \quad z_{3}=1+i
$$

(a) (3 point) What is $z_{1}+z_{2}$ in polar form?$0 \quad \square-2 e^{i \pi / 4}$
$\square \sqrt{2} e^{-i \pi / 4}$
$\square 2 e^{i \pi / 4}$
$\square \sqrt{2} e^{\frac{5 \pi}{4} i}$
$\square \sqrt{2} e^{i \pi / 2}$
(b) (3 point) What is $\frac{z_{1}}{z_{3}}$ in standard form?
1
$\square-i$$\square-2 i$$i / 2$

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$
y^{\prime \prime}=2 y^{\prime} .
$$

Below there are given several functions where c_{1} and c_{2} are arbitrary real constants. Mark the expression which corresponds to the general solution of the differential equation.
$\square y(t)=c_{1} e^{-t}+c_{2} e^{t}$
$\square y(t)=c_{1} e^{2 t}+c_{2}$
$\square y(t)=c_{1} \cos (t)+c_{2} \sin (t)$
$\square y(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)$
$\square y(t)=c_{1}+c_{2} t$
$\square y(t)=c_{1} t^{2}+c_{2} t$
$\square y(t)=c_{1}+c_{2} t^{2}$
$\square y(t)=c_{1}+c_{2} e^{t}$
(b) (5 point) Mark the solution $x(t)$ to the inhomogeneous differential equation

$$
x^{\prime \prime}(t)=2 x^{\prime}(t)+1, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

among the following expressions:
$\square x(t)=t^{2}$
$\square x(t)=-\frac{t}{2}+\frac{1}{4}\left(e^{2 t}-1\right)$
$\square x(t)=-4 t^{2}+1$
$\square x(t)=t-e^{2 t}$
$\square x(t)=t-t e^{2 t}$
$\square x(t)=t-\sin (2 t)$
$\square x(t)=e^{2 t}-1+t^{2}-\frac{t}{2}$
$\square x(t)=t-\cos (2 t)$

Exercise 5 (8 point)

Answer whether the following statements are true or false.
(a) (2 point) The velocity vector and the unit tangent vector have always the same length.True
\square False
(b) (2 point) When a point moves on a circle, the curvature is constant.True

False
(c) (2 point) The product of any two real functions which are both differentiable at a point, is also differentiable at that point.
(d) (2 point) The function $f(x)=\sin (x)$ where $0 \leq x \leq 2 \pi$, has an inverse functionTrue
False

Exercise 6 (7 point)

A domain \mathcal{R} in the plane can be represented with the help of the inequalities $4 \leq x^{2}+y^{2} \leq 9$ and $x \leq y$.
(a) (3 point) Which of the following inequalities show, that a point with coordinates $(x, y)=(r \cos (\theta), r \sin (\theta))$ belongs to \mathcal{R} ?
$\square r \geq 2, \quad 0 \leq \theta \leq \pi$
$\square 4 \leq r \leq 9, \quad \theta=\pi / 2$
$\square 4 \leq r \leq 9, \quad \pi / 4 \leq \theta \leq 5 \pi / 4$
$\square r \leq 9$
$\square 2 \leq r \leq 3, \quad \pi / 4 \leq \theta \leq 5 \pi / 4$
$\square 2 \leq r \leq 3$
(b) (4 point) What is the area of the domain?
$3 \pi / 2$
$\square \pi$

Exercise 7 (8 point)

A region \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy

$$
\sqrt{x^{2}+y^{2}} \leq 2
$$

A function f is defined on \mathcal{R} and is given by $f(x, y)=x^{2}+2 y^{2}$.
(a) (4 point) Which of the following points is an inner critical point for f ?
$\square\langle 0,1\rangle$
$\square\langle 1,1\rangle$
$\square\langle 0,0\rangle$
$\square\langle 1,-1\rangle$
$\square\langle 1,0\rangle$
$\square\langle-1,-1\rangle$
(b) (4 point) What is the maximum value of f ?
$\square 2$
$\square 6$
10
$\square 4$12

Exercise 8 ($\mathbf{1 2}$ point)

A surface \mathcal{F} in space is determined by the equation $F(x, y, z)=0$, where

$$
F(x, y, z)=x^{2}+y^{2}-2 z^{2}
$$

(a) (6 point) Which of the following equations correspond to the tangent plane to \mathcal{F} at the point $P=(1,1,1)$?
$\square 3=x+y+z$$z=-x+2 y$
$\square z=1$
$\square 2 z=x+y$
$\square z=-y+2 x$
$\square 0=3 x+2 y-5 z$
(b) (6 point) From the equation $F(x, y, z)=0$, what is the partial derivative $\partial z / \partial y$ at the point P ?
$\square-1$
$\square 0$
$\square-1 / 2$
$\square 3 / 5$

Exercise 9 (12 point)

A function is given by

$$
f(x, y)=\ln \left(e^{x}+y\right)
$$

where $x>-1$ and $y>0$.
(a) (2 point) Mark whether the following statement is true or false: $f(x, y)$ can never be less than zero.
\square True
\square False
(b) (2 point) Mark whether the following statement is true or false: $f(x, y)$ is always less than 100 .
\square True
False
(c) (4 point) What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(0,1)$ and direction given by the unit vector $\mathbf{u}=\langle 1,0\rangle$?
1
3
4$\frac{1}{2}$
$\sqrt{2}$
(d) (4 point) Which of the following unit vectors point in the direction in which f grows fastest starting from P (the direction \mathbf{v} for which $D_{\mathbf{v}} f(P)$ is maximal)?
$\square\left\langle-\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\left\langle\frac{2 \sqrt{5}}{5},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\langle 0,-1\rangle$
$\square\langle-1,0\rangle$
$\square\left\langle\frac{\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
$\square\langle 1,0\rangle$
$\square\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$

Exercise 10 (9 point)

A function is given by

$$
f(x)=x^{2}+\sin (2 x)
$$

for all real numbers x.
(a) (5 point) Mark the correct expression for $f^{\prime \prime \prime}(x)$ (i.e. the third order derivative of f)
$\square \cos (2 x)$
$8 \cos (2 x)$
$8 \sin (2 x)$
$\square-2 \cos (2 x)$
$\square-8 \cos (2 x)$
$\square-8 \sin (2 x)$
(b) (4 point) Which one of the following expressions gives the third order Taylor polynomial for f when the developing point is $a=0$?
$\square 1+x+x^{2}+x^{3}$
$\square-x+x^{2}-x^{3} / 6$
$\square 2 x+x^{2}$
$\square 1+x^{2} / 2+x^{3} / 6$
$\square 2 x+x^{2}-4 x^{3} / 3$
$\square 2 x+x^{2}-4 x^{3}$

Exercise 11 (11 point)

A curve in the plane is given by

$$
\begin{aligned}
& x(t)=\cos (2 t), \\
& y(t)=\sin (t)
\end{aligned}
$$

for all real numbers t.
(a) (2 point) For which positive value of the parameter t does the curve get back to the point $P=(1,0)$ for the first time? (Note that the curve is at P when $t=0$.)
$\square \pi / 8$
$\pi / 4$
$\pi / 2$$2 \pi$
(b) (5 point) What is the curvature at P ?
$\square 1$
2
34
(c) (4 point) What is the value of the velocity when $t=\pi$?
$\square 0$
$\square 1$

Opgave 12 (5 point)

The figure below shows the graph of a function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

expressed in polar coordinates. The graph represents a cardioid.

One of the expressions below corresponds to the figure. Which one?
$\square f(\theta)=1+\sin (2 \theta)$
$\square f(\theta)=\sin ^{2}(\theta)-\cos (\theta)$
$\square f(\theta)=1-\cos (\theta)$
$\square f(\theta)=\cos (\theta) \sin (\theta)$
$\square f(\theta)=1+2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)$
$\square f(\theta)=\frac{2-\sin (\theta)}{2}$

