Reexam in Calculus

20. february 2019

Exercise 1 (6 point)

A function is defined by

$$f(x,y) = 1 + \frac{y^2}{x^2}$$

for real variables *x* and *y*.

- (a) (3 point) The domain of definition of *f* consists of all points (*x*, *y*) which obey
 - $\Box x < 0$ $\bigtriangledown x \neq 0$ $\Box yx \neq 0$ $\Box y \neq 0$ $\Box x \neq 0 \text{ og } y > 0$ $\Box y^2 = x^2$
- (b) (3 point) What is the level set f(x, y) = 2?
 - \Box A parabola $x = y^2 + 1$
 - \Box A parabola $x = y^2 1$
 - A circle with center at origin and radius 1
 - A circle with center at origin and radius 2
 - \checkmark Two straight lines $x = \pm y$ without the origin.

Exercise 2 (6 point)

A parametric curve in space is given by

$$\mathbf{r}(t) = \left\langle t, -t^2, e^t \right\rangle$$

where the parameter t can be any real number.

- (a) (3 point) What is the velocity?
 - $\Box \langle 1, -2t, e^t \rangle \qquad \Box \sqrt{5+e} \qquad \bigtriangledown \sqrt{1+4t^2+e^{2t}} \\ \Box \sqrt{1-2t+e^t} \qquad \Box \sqrt{4+t^2} \qquad \Box \sqrt{1-4t^2+e^{2t}} \\ \Box \sqrt{1-4t^2+e^{2t}} \qquad \Box \sqrt{1-4t^2+e^{2t}} \\ \Box \sqrt{1-4t^2$
- (b) (3 point) Which of the following vectors represent the acceleration vector at t = 0?

Exercise 3 (6 point)

Three complex numbers are given by

 $z_1 = 1 - i$, $z_2 = 2i^2$ og $z_3 = 1 + i$.

(a) (3 point) What is $z_1 + z_2$ in polar form?

0	$\Box -2e^{i\pi/4}$	$\Box \sqrt{2}e^{-i\pi/4}$
$\Box 2e^{i\pi/4}$	$\sqrt{2}e^{\frac{5\pi}{4}i}$	$\Box \sqrt{2}e^{i\pi/2}$

(b) (3 point) What is $\frac{z_1}{z_3}$ in standard form?

1	\Box i	$\Box -2i$
\checkmark $-i$	$\Box 2i$	□ <i>i</i> /2

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$y''=2y'.$$

Below there are given several functions where c_1 and c_2 are arbitrary real constants. Mark the expression which corresponds to the general solution of the differential equation.

- $\begin{array}{c} \Box \ y(t) = c_1 e^{-t} + c_2 e^t \\ \Box \ y(t) = c_1 \cos(t) + c_2 \sin(t) \\ \Box \ y(t) = c_1 + c_2 t \\ \Box \ y(t) = c_1 + c_2 t^2 \end{array} \qquad \begin{array}{c} \Box \ y(t) = c_1 e^{2t} + c_2 \\ \Box \ y(t) = c_1 \sin(2t) + c_2 \cos(2t) \\ \Box \ y(t) = c_1 t^2 + c_2 t \\ \Box \ y(t) = c_1 + c_2 t^2 \end{array}$
- (b) (5 point) Mark the solution x(t) to the inhomogeneous differential equation

$$x''(t) = 2x'(t) + 1$$
, $x(0) = 0$, $x'(0) = 0$,

among the following expressions:

$$\begin{array}{c} \Box \ x(t) = t^2 \\ \Box \ x(t) = -4t^2 + 1 \\ \Box \ x(t) = t - te^{2t} \\ \Box \ x(t) = e^{2t} - 1 + t^2 - \frac{t}{2} \end{array} \begin{array}{c} \bigtriangledown \ x(t) = -\frac{t}{2} + \frac{1}{4}(e^{2t} - 1) \\ \Box \ x(t) = t - e^{2t} \\ \Box \ x(t) = t - e^{2t} \\ \Box \ x(t) = t - \sin(2t) \\ \Box \ x(t) = t - \cos(2t) \end{array}$$

Exercise 5 (8 point)

Answer whether the following statements are true or false.

- (a) (2 point) The velocity vector and the unit tangent vector have always the same length.
- (b) (2 point) When a point moves on a circle, the curvature is constant.
 - ✓ True
 □ False
- (c) (2 point) The product of any two real functions which are both differentiable at a point, is also differentiable at that point.
 - ✓ True
 □ False
- (d) (2 point) The function $f(x) = \sin(x)$ where $0 \le x \le 2\pi$, has an inverse function.

True

🖌 False

Exercise 6 (7 point)

A domain \mathcal{R} in the plane can be represented with the help of the inequalities $4 \le x^2 + y^2 \le 9$ and $x \le y$.

(a) (3 point) Which of the following inequalities show, that a point with coordinates $(x, y) = (r \cos(\theta), r \sin(\theta))$ belongs to \mathcal{R} ?

\Box $r \ge 2$, $0 \le$	$\leq heta \leq \pi$	$\Box 4 \leq r \leq 9,$	$\theta = \pi/2$
$\Box 4 \leq r \leq 9,$	$\pi/4 \le heta \le 5\pi/4$	$\Box r \leq 9$	
$\checkmark 2 \leq r \leq 3,$	$\pi/4 \le heta \le 5\pi/4$	$\Box 2 \leq r \leq 3$	

(b) (4 point) What is the area of the domain?

$\pi/2$	$\Box 3\pi/2$	🚺 5π/2
$\Box \pi$	$\Box 2\pi$	3π

Exercise 7 (8 point)

A region \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy

$$\sqrt{x^2 + y^2} \le 2.$$

A function *f* is defined on \mathcal{R} and is given by $f(x, y) = x^2 + 2y^2$.

(a) (4 point) Which of the following points is an inner critical point for f?

\Box $\langle 0,1 \rangle$	\Box $\langle 1,1 \rangle$
\checkmark $\langle 0, 0 \rangle$	\Box $\langle 1, -1 \rangle$
\Box $\langle 1, 0 \rangle$	\Box $\langle -1, -1 \rangle$

(b) (4 point) What is the maximum value of *f*?

2	6	☐ 10
4	8	12

Exercise 8 (12 point)

A surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0, where

$$F(x, y, z) = x^2 + y^2 - 2z^2.$$

(a) (6 point) Which of the following equations correspond to the tangent plane to \mathcal{F} at the point P = (1, 1, 1)?

$\Box 3 = x + y + z$	$\Box z = -x + 2y$	$\Box z = 1$
$\checkmark 2z = x + y$	$\Box z = -y + 2x$	$\Box 0 = 3x + 2y - 5z$

- (b) (6 point) From the equation F(x, y, z) = 0, what is the partial derivative $\frac{\partial z}{\partial y}$ at the point *P*?
 - $\begin{array}{c|c} -1 & & & & & \\ \hline & 0 & & & & \\ \hline & 1/2 & & & \\ \hline & 4 \end{array}$

Exercise 9 (12 point)

A function is given by

$$f(x,y) = \ln(e^x + y),$$

where x > -1 and y > 0.

(a) (2 point) Mark whether the following statement is true or false: f(x, y) can never be less than zero.

- (b) (2 point) Mark whether the following statement is true or false: f(x, y) is always less than 100.
- (c) (4 point) What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P = (0,1) and direction given by the unit vector $\mathbf{u} = \langle 1, 0 \rangle$?
- (d) (4 point) Which of the following unit vectors point in the direction in which *f* grows fastest starting from *P* (the direction **v** for which $D_{\mathbf{v}}f(P)$ is maximal)?

Exercise 10 (9 point)

A function is given by

$$f(x) = x^2 + \sin(2x)$$

for all real numbers *x*.

- (a) (5 point) Mark the correct expression for f'''(x) (i.e. the third order derivative of f)
- (b) (4 point) Which one of the following expressions gives the third order Taylor polynomial for f when the developing point is a = 0?

Exercise 11 (11 point)

A curve in the plane is given by

$$\begin{aligned} x(t) &= \cos(2t), \\ y(t) &= \sin(t) \end{aligned}$$

for all real numbers *t*.

(a) (2 point) For which positive value of the parameter *t* does the curve get back to the point P = (1,0) for the first time? (Note that the curve is at *P* when t = 0.)

	$\pi/8$	$\prod \pi/4$	$\Box \pi/2$	Μ π	$\Box 2\pi$
(b)	(5 point) What	t is the curva	ture at <i>P</i> ?		
	1	2	3	✓ 4	5
(c)	(4 point) What	t is the value	of the velocity w	hen $t = \pi$?	
	0] 2	4	
	1] 3	5	

Opgave 12 (5 point)

The figure below shows the graph of a function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi,$$

expressed in polar coordinates. The graph represents a cardioid.

One of the expressions below corresponds to the figure. Which one?

- $\begin{array}{l} \square \ f(\theta) = 1 + \sin(2\theta) \\ \square \ f(\theta) = 1 \cos(\theta) \\ \hline \end{array} \\ f(\theta) = 1 + 2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2}) \end{array}$
- $\begin{array}{c} \square \ f(\theta) = \sin^2(\theta) \cos(\theta) \\ \square \ f(\theta) = \cos(\theta) \sin(\theta) \\ \square \ f(\theta) = \frac{2 \sin(\theta)}{2} \end{array}$