Reexam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

21 February 2018

The present exam set consists of 8 numbered pages with 12 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.

It is allowed to use books, notes etc. It **is not** allowed to use electronic devices.

Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your **full name** and **student number** below.

Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (13 points)

(a) (5 points). A second order differential equation is given by

$$y'' - 10y' + 25y = 0.$$

Below is a list of function expressions containing two arbitrary constants c_1 and c_2 . Mark the expression which constitute the general solution of the differential equation.

 $\begin{array}{c} \begin{array}{c} y(t) = c_1 e^{-3t} + c_2 e^t \\ \\ y(t) = c_1 e^{-5t} + c_2 e^{2t} \\ \\ y(t) = c_1 e^t + c_2 e^{5t} \\ \\ y(t) = c_1 e^{5t} + c_2 t e^{5t} \\ \\ y(t) = c_1 e^{2t} + c_2 t e^{2t} \\ \\ \\ y(t) = c_1 e^{2t} \cos(5t) + c_2 e^{2t} \sin(5t) \\ \\ \\ y(t) = c_1 e^t \cos(6t) + c_2 e^t \sin(6t) \end{array}$

$$y(t) = c_1 e^{2t} \cos(3t) + c_2 e^{2t} \sin(3t)$$

(b) (4 points). Mark the solution to the initial value problem

$$y'' - 10y' + 25y = 0$$
, $y(0) = 2$, $y'(0) = 7$

among the following options:

$$\begin{array}{ll} \Box \ y(t) = -\frac{5}{4}e^{-3t} + \frac{13}{4}c_2e^t & \Box \ y(t) = 2e^{2t} + 3te^{2t} \\ \Box \ y(t) = 3e^{-5t} - c_2e^{2t} & \Box \ y(t) = 2e^{2t}\cos(5t) + 3e^{2t}\sin(5t) \\ \Box \ y(t) = -\frac{1}{4}e^t + \frac{5}{4}e^{5t} & \Box \ y(t) = 2e^t\cos(6t) + 4e^t\sin(6t) \\ \Box \ y(t) = 2e^{5t} - 3te^{5t} & \Box \ y(t) = e^{2t}\cos(3t) + e^{2t}\sin(3t) \end{array}$$

(c) (4 points). Consider the inhomogeneous differential equation

$$y'' - 10y' + 25y = 5t + 3.$$

Which one of the following functions is a particular solution to that equation?

 $\Box \quad \frac{5}{2}t + \frac{3}{2} \qquad \Box \quad t - 1 \qquad \Box \quad t^2 - 5t - 2 \qquad \Box \quad 2e^t$ $\Box \quad \frac{1}{5}t + \frac{1}{5} \qquad \Box \quad 5t - 1 \qquad \Box \quad 2t^2 - t + 1 \qquad \Box \quad 3t - 4$

Problem 2 (7 points)

A plane curve is given by

$$\begin{aligned} x &= t - e^t, \\ y &= t + e^t, \end{aligned}$$

where the parameter t runs through the real numbers.

(a) (3 points). The point P = (-1, 1) lies on the curve. Which value of the parameter *t* corresponds to this point?

	□ −2	\Box -1	1	3
	$\Box - \ln(2)$	0	□ ln(2)	$\Box \frac{7}{2}$
(b)	(4 points). What is	s the curvature of th	the curve for $t = 0$?	
	$\square \frac{5}{4}$	$\square \frac{\sqrt{3}}{4}$	$\square \frac{1}{5}$	8
	$\Box \frac{\sqrt{2}}{4}$	$\Box \sqrt{5}$	$\Box \frac{5}{3}$	$\boxed{\frac{1}{4}}$

Problem 3 (8 points)

A curve in space is given by

$$x = \frac{1}{2}t,$$

$$y = \frac{2}{3}t^{\frac{3}{2}},$$

$$z = \frac{1}{2}t^{2},$$

where the parameter *t* runs through the positive real numbers.

(a) (3 points). What is the derivative y'?

$\Box t^3 + 1$	$\Box t \ln(t)$	$\Box t$	$\Box t\sqrt{t}$
$\Box \frac{1}{3t}$	$\Box t^2$	$\Box \sqrt{t}$	$\frac{4}{15}t^{\frac{5}{2}}$

(b) (5 points). What is the arc length of the curve from t = 1 to t = 5?

14	$\Box 10\sqrt{2}$	$\Box 7\sqrt{3}$	18
5		11	$\boxed{\frac{25}{2}}$

Problem 4 (7 points)

A function is defined by

$$f(x) = \frac{1}{x^2 + 2}.$$

- (a) (3 points). What is the derivative f'(x)?
 - $\Box \frac{1}{2x} \qquad \Box (x^{2}+2)^{-\frac{1}{2}} \qquad \Box 2x(x^{2}+2)^{\frac{1}{2}} \\ \Box -\frac{2x}{(x^{2}+2)^{2}} \qquad \Box -\frac{1}{(x^{2}+2)^{2}} \qquad \Box \ln(x^{2}+2)$
- (b) (4 points). Which one of the polynomials below is the second order Taylor polynomial for f at the points x = 0?
 - $\Box \ 1 + x \frac{3}{2}x^2 \qquad \Box \ \frac{1}{2} + x \frac{1}{2}x^2 \qquad \Box \ 2 + 4x 5x^2 \\ \Box \ \frac{1}{2} + \frac{1}{2}x + \frac{1}{6}x^2 \qquad \Box \ \frac{1}{2} \frac{1}{4}x^2 \qquad \Box \ x \frac{1}{2}x^2$

Problem 5 (7 points)

Consider the differential equation

$$\frac{dy}{dx} = \frac{e^x}{y}, \quad y > 0.$$

There is a unique solution y(x) with initial value y(0) = 2. Answer the following questions regarding this solution:

- (a) (3 points). What is the derivative y'(0)?
 - $\begin{array}{c|c} -2 & & & & & \\ \hline & -\frac{1}{2} & & & & \\ \hline & 1 & & & \\ \hline & 3 \end{array}$
- (b) (4 points). What is the function value y(1)?
 - \Box 5 \Box $\frac{1}{3}$ \Box $\ln(2)$ \Box e+1 \Box 1 \Box $\sqrt{2e+2}$

Problem 6 (6 points)

Two complex numbers are given by

$$z_1 = \frac{4+3i}{2-i} + 1 + i$$
 , $z_2 = (e^{2+\frac{\pi}{6}i})^3$

(a) (3 points). What is z_1 written in standard form?

$\Box 2+3i$	$\boxed{\frac{1}{4} + \frac{5}{4}i}$	$\Box 1-i$	□ 8i
$\Box 1+i$	$\Box \frac{2}{3} + \frac{2}{3}i$	\Box -3 <i>i</i>	\Box -5+ <i>i</i>

(b) (3 points). What is z_2 written in standard form?

$\Box 1 + e^3 i$	$\Box 1 - e^2 i$	$\Box -e^9$	$\Box e + e^2 i$
$\Box e^6$	$\Box 1 + e^2 i$	$\Box e^6 i$	$\Box 1+3i$

Problem 7 (6 points)

A function is defined by

$$f(x,y) = x\cos(y) - y\sin(x).$$

(a) (2 points). What is the partial derivative $f_x(x, y)$?

$\Box -\sin(y) - \cos(x)$	$\Box \tan(y) + \sin(x)$
$\Box \cos(y)$	$\Box \cos(y) - y\cos(x)$
\Box tan(y) - 1	$\Box x^2 \cos(y)$

(b) (4 points). The graph of *f* has a tangent plane at the point $P = (\frac{\pi}{2}, 0, f(\frac{\pi}{2}, 0))$. Mark an equation for this plane.

$\Box x - y - z = 0$	$ x + 2y - 3z = \frac{\pi}{2} $
$\Box 2x + y - 2z = 0$	$\Box x - y + z = \pi$
$ x+y-z = \frac{\pi}{2} $	$\Box x + y + 2z = -\pi$

Problem 8 (16 points)

A function of two real variables is given by the transformation rule

$$f(x,y) = \frac{y}{1 + x^2 + y^2}.$$

Answer the questions below regarding this function.

(a) (4 points). The domain of f consists of all those points (x, y) which satisfy

$\Box x \ge 0$ and $y \ge 0$	$\Box y \neq 0$
$\Box x > 0 \text{ and } y > 0$	$\Box x$ and y are real numbers
$x \neq 0$ and $y \neq 0$	$\Box x \neq y$

(b) (4 points). Which of the following points are critical points for *f*? (*Remark: One false mark will cancel one true mark in this subquestion.*)

(0,1)	(0,2)
(1,1)	□ (0, −1)
□ (1, −1)	□ (2, −1)

(c) (4 points). What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P = (1, 1) and in the direction of the unit vector $\mathbf{u} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j} = \langle \frac{3}{5}, \frac{4}{5} \rangle$?

$\begin{bmatrix} 8\\5 \end{bmatrix}$	1
$\Box \frac{3}{25}$	$\Box -\frac{3}{5}$
2	$\Box -\frac{2}{45}$

(d) (4 points). The level curve with equation $f(x, y) = \frac{1}{4}$ can be described as:

- A parabola with equation $y = x^2 + 3$.
- \Box A parabola with equation $y = x^2 x + 4$.
- A straight line through $(0, \sqrt{3})$ with slope 2.
- A straight line through (0,3) with slope $-\frac{1}{2}$.
- A circle with center at (0, 2) and radius $\sqrt{3}$.
- \square A circle with center at (1, 1) and radius $\frac{1}{3}$.

Problem 9 (7 points)

A lamina covers a region \mathcal{R} in the plane precisely. The region \mathcal{R} consists of those points (*x*, *y*) which satisfy the inequalities

 $0 \le x, \quad 0 \le y, \quad 3x + y \le 6.$

The density of the lamina is $\delta(x, y) = x$. What is the mass of the lamina?

$\square \frac{1}{2}$	2	$\square \frac{9}{2}$	$\Box 5\sqrt{2}$	12
1	4	5	10	14

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x, y) which satisfy the inequalities

$$0 \le x \le y, \quad 1 \le x^2 + y^2 \le 9.$$

Mark the value of the double integral

$$\iint_{\mathcal{R}} \frac{y}{x^2 + y^2} \, dA.$$

$\boxed{\frac{1}{3}}$	$\Box \sqrt{2}$	$\square \frac{7}{2}$	6	12
$\square \frac{1}{2}$	3	$\Box 5\sqrt{2}$	10	$\square \frac{25}{2}$

Problem 11 (8 points)

A region \mathcal{T} in space consists of those points (x, y, z) which satisfy the inequalities

 $0 \le x \le 2$, $0 \le y \le 1$, $2y \le z \le 9 - 3xy^2$.

What is the volume of \mathcal{T} ?

2	$\Box \frac{7}{2}$	12	16	$\Box 18\sqrt{3}$
3	9	14	20	$\Box \frac{50}{3}$

Problem 12 (5 points)

The figure below shows the graph of the function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi$$

in polar coordinates.

Which one of the following transformation rules for f corresponds to the figure?

$\Box f(\theta) = 1 + \cos \theta$	$\Box f(\theta) = 1 - \cos \theta$
$\Box \ f(\theta) = 1 - \theta^2$	$\Box f(\theta) = 8\sin^2\theta$
$\Box f(\theta) = \theta(2\pi - \theta)$	$\Box f(\theta) = 10 - \theta^2$