Reexam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

21 February 2018

The present exam set consists of 8 numbered pages with 12 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.

It is allowed to use books, notes etc. It is not allowed to use electronic devices.
Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your full name and student number below.

Good luck!

NAME:

STUDENT NUMBER:

Answers

Problem 1 (13 points)

(a) (5 points). A second order differential equation is given by

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

Below is a list of function expressions containing two arbitrary constants c_{1} and c_{2}. Mark the expression which constitute the general solution of the differential equation.$y(t)=c_{1} e^{-3 t}+c_{2} e^{t}$
$\square y(t)=c_{1} e^{-5 t}+c_{2} e^{2 t}$
$\square y(t)=c_{1} e^{t}+c_{2} e^{5 t}$
$\square y(t)=c_{1} e^{5 t}+c_{2} t e^{5 t}$
$\square y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$
$\square y(t)=c_{1} e^{2 t} \cos (5 t)+c_{2} e^{2 t} \sin (5 t)$
$\square y(t)=c_{1} e^{t} \cos (6 t)+c_{2} e^{t} \sin (6 t)$
$\square y(t)=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)$
(b) (4 points). Mark the solution to the initial value problem

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0, \quad y(0)=2, \quad y^{\prime}(0)=7
$$

among the following options:
$\square y(t)=-\frac{5}{4} e^{-3 t}+\frac{13}{4} c_{2} e^{t}$
$\square y(t)=2 e^{2 t}+3 t e^{2 t}$
$\square y(t)=3 e^{-5 t}-c_{2} e^{2 t}$
$\square y(t)=2 e^{2 t} \cos (5 t)+3 e^{2 t} \sin (5 t)$
$\square y(t)=-\frac{1}{4} e^{t}+\frac{5}{4} e^{5 t}$
$\square y(t)=2 e^{t} \cos (6 t)+4 e^{t} \sin (6 t)$
$\square y(t)=2 e^{5 t}-3 t e^{5 t}$
$\square y(t)=e^{2 t} \cos (3 t)+e^{2 t} \sin (3 t)$
(c) (4 points). Consider the inhomogeneous differential equation

$$
y^{\prime \prime}-10 y^{\prime}+25 y=5 t+3
$$

Which one of the following functions is a particular solution to that equation?
$\square \frac{5}{2} t+\frac{3}{2}$$t-1$$t^{2}-5 t-2$
ป $\frac{1}{5} t+\frac{1}{5}$
$\square 5 t-1$
$\square 2 t^{2}-t+1$
$\square 3 t-4$

Problem 2 (7 points)

A plane curve is given by

$$
\begin{aligned}
& x=t-e^{t} \\
& y=t+e^{t}
\end{aligned}
$$

where the parameter t runs through the real numbers.
(a) (3 points). The point $P=(-1,1)$ lies on the curve. Which value of the parameter t corresponds to this point?
$\square-2$
$\square-1$3
$\square-\ln (2)$
$\square 0$
$\square \ln (2)$
(b) (4 points). What is the curvature of the curve for $t=0$?
$\square \frac{5}{4}$
$0 \frac{\sqrt{3}}{4}$
$\square \frac{1}{5}$
$\square 8$
$0 \frac{\sqrt{2}}{4}$
$\square \sqrt{5}$
$\square \frac{5}{5}$
■ $\frac{1}{4}$

Problem 3 (8 points)

A curve in space is given by

$$
\begin{aligned}
& x=\frac{1}{2} t, \\
& y=\frac{2}{3} t^{\frac{3}{2}}, \\
& z=\frac{1}{2} t^{2},
\end{aligned}
$$

where the parameter t runs through the positive real numbers.
(a) (3 points). What is the derivative y^{\prime} ?
$\square t^{3}+1$
$\square t \ln (t)$$\square t \sqrt{t}$
$\square \frac{1}{3 t}$$\square \sqrt{t}$
$\square \frac{4}{15} t^{\frac{5}{2}}$
(b) (5 points). What is the arc length of the curve from $t=1$ to $t=5$?

- 14
$\square 10 \sqrt{2}$
$\square 7 \sqrt{3}$
188$\square \frac{25}{2}$

Problem 4 (7 points)

A function is defined by

$$
f(x)=\frac{1}{x^{2}+2} .
$$

(a) (3 points). What is the derivative $f^{\prime}(x)$?
$\square \frac{1}{2 x}$
$\square\left(x^{2}+2\right)^{-\frac{1}{2}}$
$\square 2 x\left(x^{2}+2\right)^{\frac{1}{2}}$
$\square-\frac{2 x}{\left(x^{2}+2\right)^{2}}$
$\square-\frac{1}{\left(x^{2}+2\right)^{2}}$
$\square \ln \left(x^{2}+2\right)$
(b) (4 points). Which one of the polynomials below is the second order Taylor polynomial for f at the points $x=0$?
$\square 1+x-\frac{3}{2} x^{2}$
$\square \frac{1}{2}+x-\frac{1}{2} x^{2}$
$\square 2+4 x-5 x^{2}$
$\square \frac{1}{2}+\frac{1}{2} x+\frac{1}{6} x^{2}$
$\square \frac{1}{2}-\frac{1}{4} x^{2}$
$\square x-\frac{1}{2} x^{2}$

Problem 5 (7 points)

Consider the differential equation

$$
\frac{d y}{d x}=\frac{e^{x}}{y}, \quad y>0
$$

There is a unique solution $y(x)$ with initial value $y(0)=2$. Answer the following questions regarding this solution:
(a) (3 points). What is the derivative $y^{\prime}(0)$?
$\square-2$
V $\frac{1}{2}$
2
$\square-\frac{1}{2}$
13
(b) (4 points). What is the function value $y(1)$?
$\square 5$$\square \ln (2)$$e+1$$\square \sqrt{2 e+2}$

Problem 6 (6 points)

Two complex numbers are given by

$$
z_{1}=\frac{4+3 i}{2-i}+1+i \quad, \quad z_{2}=\left(e^{2+\frac{\pi}{6} i}\right)^{3}
$$

(a) (3 points). What is z_{1} written in standard form?
$\square 2+3 i$
$\square \frac{1}{4}+\frac{5}{4} i$
$\square 1-i$
$\square 8 i$
$\square 1+i$
$\square \frac{2}{3}+\frac{2}{3} i$
$\square-3 i$
$\square-5+i$
(b) (3 points). What is z_{2} written in standard form?
$1+e^{3} i$
$\square e^{6}$
$\square 1-e^{2} i$
$\square-e^{9}$
$\square e+e^{2} i$$1+e^{2} i$
$\square e^{6} i$
$\square 1+3 i$

Problem 7 (6 points)

A function is defined by

$$
f(x, y)=x \cos (y)-y \sin (x) .
$$

(a) (2 points).What is the partial derivative $f_{x}(x, y)$?
$\square-\sin (y)-\cos (x)$
$\square \tan (y)+\sin (x)$
$\square \cos (y)$
$\square \cos (y)-y \cos (x)$
$\square \tan (y)-1$
$\square x^{2} \cos (y)$
(b) (4 points). The graph of f has a tangent plane at the point $P=\left(\frac{\pi}{2}, 0, f\left(\frac{\pi}{2}, 0\right)\right)$. Mark an equation for this plane.
$\square x-y-z=0$
$\square x+2 y-3 z=\frac{\pi}{2}$
$\square 2 x+y-2 z=0$
$\square x-y+z=\pi$
$\square x+y-z=\frac{\pi}{2}$
$\square x+y+2 z=-\pi$

Problem 8 (16 points)

A function of two real variables is given by the transformation rule

$$
f(x, y)=\frac{y}{1+x^{2}+y^{2}}
$$

Answer the questions below regarding this function.
(a) (4 points). The domain of f consists of all those points (x, y) which satisfy
$\square x \geq 0$ and $y \geq 0$
$\square y \neq 0$
$\square x>0$ and $y>0$
$\square x$ and y are real numbers
$\square x \neq 0$ and $y \neq 0$
$\square x \neq y$
(b) (4 points). Which of the following points are critical points for f ? (Remark: One false mark will cancel one true mark in this subquestion.)
$\square(0,1)$
$\square(0,2)$
$\square(1,1)$

- $(0,-1)$
$\square(1,-1)$
$\square(2,-1)$
(c) (4 points). What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(1,1)$ and in the direction of the unit vector $\mathbf{u}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$?
$\square \frac{8}{5}$
$\square \frac{3}{25}$
$\square-\frac{3}{5}$
$\square 2$
- $-\frac{2}{45}$
(d) (4 points). The level curve with equation $f(x, y)=\frac{1}{4}$ can be described as:
\square A parabola with equation $y=x^{2}+3$.
\square A parabola with equation $y=x^{2}-x+4$.
\square A straight line through $(0, \sqrt{3})$ with slope 2 .
\square A straight line through $(0,3)$ with slope $-\frac{1}{2}$.
\square A circle with center at $(0,2)$ and radius $\sqrt{3}$.
\square A circle with center at $(1,1)$ and radius $\frac{1}{3}$.

Problem 9 (7 points)

A lamina covers a region \mathcal{R} in the plane precisely. The region \mathcal{R} consists of those points (x, y) which satisfy the inequalities

$$
0 \leq x, \quad 0 \leq y, \quad 3 x+y \leq 6
$$

The density of the lamina is $\delta(x, y)=x$. What is the mass of the lamina?
$\square \frac{1}{2}$
$\square 2$
$\square \frac{9}{2}$
$\square 5 \sqrt{2}$
$\square 12$
$\square 1$
■ 4
$\square 5$
$\square 10$

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x, y) which satisfy the inequalities

$$
0 \leq x \leq y, \quad 1 \leq x^{2}+y^{2} \leq 9
$$

Mark the value of the double integral

$$
\iint_{\mathcal{R}} \frac{y}{x^{2}+y^{2}} d A .
$$(V) $\sqrt{2}$$\square 6$

$\square 12$
$\square \frac{1}{2}$$\square 5 \sqrt{2}$
$\square 10$
$\square \frac{25}{2}$

Problem 11 (8 points)

A region \mathcal{T} in space consists of those points (x, y, z) which satisfy the inequalities

$$
0 \leq x \leq 2, \quad 0 \leq y \leq 1, \quad 2 y \leq z \leq 9-3 x y^{2} .
$$

What is the volume of \mathcal{T} ?$\square \frac{7}{2}$
$\square 12$
$\square 16$
$\square 18 \sqrt{3}$
$\square 3$
$\square 9$
■ 14
$\square 20$
$\square \frac{50}{3}$

Problem 12 (5 points)

The figure below shows the graph of the function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

in polar coordinates.

Which one of the following transformation rules for f corresponds to the figure?
$\square f(\theta)=1+\cos \theta$
$\square f(\theta)=1-\cos \theta$
$\square f(\theta)=1-\theta^{2}$
$\square f(\theta)=8 \sin ^{2} \theta$
$\square f(\theta)=\theta(2 \pi-\theta)$
$\square f(\theta)=10-\theta^{2}$

