Reexam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

21 February 2018

The present exam set consists of 8 numbered pages with 12 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.

It is allowed to use books, notes etc. It **is not** allowed to use electronic devices.

Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your **full name** and **student number** below.

Good luck!

NAME:	
STUDENT NUMBER:	

Answers

Problem 1 (13 points)

(a) (5 points). A second order differential equation is given by

$$y'' - 10y' + 25y = 0.$$

Below is a list of function expressions containing two arbitrary constants c_1 and c_2 . Mark the expression which constitute the general solution of the differential equation.

- $| y(t) = c_1 e^{-3t} + c_2 e^t$
- $y(t) = c_1 e^{-5t} + c_2 e^{2t}$
- $| y(t) = c_1 e^t + c_2 e^{5t}$
- $\nabla v(t) = c_1 e^{5t} + c_2 t e^{5t}$
- $| y(t) = c_1 e^{2t} \cos(5t) + c_2 e^{2t} \sin(5t)$
- $| y(t) = c_1 e^t \cos(6t) + c_2 e^t \sin(6t)$

(b) (4 points). Mark the solution to the initial value problem

$$y'' - 10y' + 25y = 0$$
, $y(0) = 2$, $y'(0) = 7$

among the following options:

- $y(t) = -\frac{1}{4}e^t + \frac{5}{4}e^{5t}$
- $\nabla y(t) = 2e^{5t} 3te^{5t}$

(c) (4 points). Consider the inhomogeneous differential equation

$$y'' - 10y' + 25y = 5t + 3.$$

Which one of the following functions is a particular solution to that equation?

- $\boxed{} \frac{1}{5}t + \frac{1}{5}$ $\boxed{} 5t 1$ $\boxed{} 2t^2 t + 1$ $\boxed{} 3t 4$

Problem 2 (7 points)

A plane curve is given by

$$x = t - e^t,$$

$$y = t + e^t,$$

where the parameter t runs through the real numbers.

- (a) (3 points). The point P = (-1,1) lies on the curve. Which value of the parameter *t* corresponds to this point?
- $\prod 1$
- $\prod 3$

- $\prod \ln(2)$
- $\prod \frac{7}{2}$
- (b) (4 points). What is the curvature of the curve for t = 0?
 - $\frac{5}{4}$
- - $\frac{1}{5}$
- \square 8

- $\sqrt{\frac{1}{4}}$

Problem 3 (8 points)

A curve in space is given by

$$x=\tfrac{1}{2}t,$$

$$y = \frac{2}{3}t^{\frac{3}{2}}, z = \frac{1}{2}t^{2},$$

$$z = \frac{1}{2}t^2$$

where the parameter t runs through the positive real numbers.

- (a) (3 points). What is the derivative y'?

 - $\Box t^3 + 1$ $\Box t \ln(t)$ $\Box t$

- $\Box t^2$ $\boxed{V} \sqrt{t}$ $\Box \frac{4}{15}t^{\frac{5}{2}}$
- (b) (5 points). What is the arc length of the curve from t = 1 to t = 5?
 - **√** 14
- $\prod 18$

- \Box 5
- $\prod 8$
- 11
- $\frac{25}{2}$

Problem 4 (7 points)

A function is defined by

$$f(x) = \frac{1}{x^2 + 2}.$$

(a) (3 points). What is the derivative f'(x)?

 $\frac{1}{2x}$

 $\sqrt{-\frac{2x}{(x^2+2)^2}}$

 $\prod \ln(x^2+2)$

(b) (4 points). Which one of the polynomials below is the second order Taylor polynomial for f at the points x = 0?

 $1 + 4x - 5x^2$

Problem 5 (7 points)

Consider the differential equation

$$\frac{dy}{dx} = \frac{e^x}{y}, \quad y > 0.$$

There is a unique solution y(x) with initial value y(0) = 2. Answer the following questions regarding this solution:

(a) (3 points). What is the derivative y'(0)?

 $\prod -2$

 $\sqrt{\frac{1}{2}}$

 $\prod 2$

 $-\frac{1}{2}$

 $\prod 1$

 $\prod 3$

(b) (4 points). What is the function value y(1)?

□ 5

 $\frac{1}{3}$

 $\prod ln(2)$

 $\Box e+1$

 $\prod 1$

 $\sqrt{2e+2}$

Problem 6 (6 points)

Two complex numbers are given by

$$z_1 = \frac{4+3i}{2-i} + 1 + i$$
 , $z_2 = (e^{2+\frac{\pi}{6}i})^3$

(a) (3 points). What is z_1 written in standard form?

 $\boxed{2+3i}$ $\boxed{\frac{1}{4}+\frac{5}{4}i}$ $\boxed{1-i}$

 \square 8i

 \Box 1+i \Box $\frac{2}{3} + \frac{2}{3}i$ \Box -3i \Box -5+i

(b) (3 points). What is z_2 written in standard form?

 $\Box e^6$

 $\prod 1+3i$

Problem 7 (6 points)

A function is defined by

$$f(x,y) = x\cos(y) - y\sin(x).$$

(a) (2 points). What is the partial derivative $f_x(x,y)$?

 $\prod \tan(y) + \sin(x)$

 $\bigcap \cos(y)$

 $\nabla \cos(y) - y\cos(x)$

 $\prod \tan(y) - 1$

 $\prod x^2 \cos(y)$

(b) (4 points). The graph of f has a tangent plane at the point $P = (\frac{\pi}{2}, 0, f(\frac{\pi}{2}, 0))$. Mark an equation for this plane.

 $\nabla x - y - z = 0$

2x + y - 2z = 0

Problem 8 (16 points)

A function of two real variables is given by the transformation rule

$$f(x,y) = \frac{y}{1 + x^2 + y^2}.$$

Answer the questions below regarding this function.

	1 0 0		
(a)	(4 points). The domain of f consist	ets of all those points (x, y) which satisfy	
	$x \ge 0$ and $y \ge 0$	$y \neq 0$	
	x > 0 and $y > 0$	\checkmark x and y are real numbers	
	$x \neq 0$ and $y \neq 0$		
(b)	(4 points). Which of the following points are critical points for f ? (Remark One false mark will cancel one true mark in this subquestion.)		
	☑ (0,1)	□ (0,2)	
	☐ (1,1)		
(c)	(2) (4 points). What is the directional derivative $D_{\bf u} f(P)$ at the point $P=(1,1)$ and in the direction of the unit vector ${\bf u}=\frac{3}{5}{\bf i}+\frac{4}{5}{\bf j}=\langle \frac{3}{5},\frac{4}{5}\rangle$?		
	□ 8/5 □ □ 1/2 □ 1/2 □ 1/2 □ 1/2	<u> </u>	
	$\frac{3}{25}$	$\Box -\frac{3}{5}$	
	□ 2	$\sqrt{} - \frac{2}{45}$	
(d)	(4 points). The level curve with eq	quation $f(x,y) = \frac{1}{4}$ can be described as:	
	\square A parabola with equation $y = x^2 + 3$.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x^2 - x + 4.$	
	\Box A straight line through $(0, \sqrt{3})$ with slope 2.		
	\square A straight line through $(0,3)$ with slope $-\frac{1}{2}$.		
	✓ A circle with center at (0,2) an	d radius $\sqrt{3}$.	
	☐ A circle with center at (1,1) an	d radius $\frac{1}{3}$.	

Problem 9 (7 points)

A lamina covers a region \mathcal{R} in the plane precisely. The region \mathcal{R} consists of those points (x, y) which satisfy the inequalities

$$0 \le x, \quad 0 \le y, \quad 3x + y \le 6.$$

The density of the lamina is $\delta(x, y) = x$. What is the mass of the lamina?

- $\frac{1}{2}$

- \square 2 \square $\frac{9}{2}$ \square $5\sqrt{2}$
- $\prod 12$

- \Box 1
- **√** 4
- □ 5 □ 10
- $\prod 14$

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x,y) which satisfy the inequalities

$$0 \le x \le y, \quad 1 \le x^2 + y^2 \le 9.$$

Mark the value of the double integral

$$\iint_{\mathcal{R}} \frac{y}{x^2 + y^2} \, dA.$$

- $\prod 12$

Problem 11 (8 points)

A region \mathcal{T} in space consists of those points (x, y, z) which satisfy the inequalities

$$0 \le x \le 2$$
, $0 \le y \le 1$, $2y \le z \le 9 - 3xy^2$.

What is the volume of \mathcal{T} ?

- \square 2
- $\frac{7}{2}$
- □ 12
 □ 16

- \prod 3

- \square 9 \square 14 \square 20

Problem 12 (5 points)

The figure below shows the graph of the function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi$$

in polar coordinates.

Which one of the following transformation rules for f corresponds to the figure?

$$f(\theta) = 1 + \cos \theta$$