Reexam in Calculus

19. august 2019

Exercise 1 (6 point)

A function is defined by

$$f(x, y, z) = \sin(x^2 + y^2 + z^2)$$

for real variables *x*, *y* and *z*.

(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy

$\Box z = 0$	all points are allowed
$\Box x^{2} + y^{2} + z^{2} > 0$ $\Box x^{2} + y^{2} + z^{2} < 0$	$\Box xyz \neq 0$
	none of the others

- (b) (3 point) Which points (x, y, z) belong to the level surface determined by f(x, y, z) = 2?
 - A sphere given by $x^2 + y^2 + z^2 = \sin^{-1}(2)$
 - ☐ The xy-plane

There are no such points

A plane parallel with the xy-plane given by $z = \sin^{-1}(2)$

none of the others

Exercise 2 (6 point)

A parametric curve in space is given by

$$\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$$

where the parameter *t* is an arbitrary real number.

(a) (2 point) What is the velocity vector of the curve?

- $\begin{array}{c} || & \langle \sin(t), \cos(t), 1 \rangle \\ || & \langle \cos(t), \sin(t), 1 \rangle \\ || & \langle \cos(t), -\sin(t), 1 \rangle \\ || & \langle \cos(t), -\sin(t), 1 \rangle \end{array} \qquad \begin{array}{c} || & \langle \sin(t^2/2), \cos(t^2/2), t^2/2 \rangle \\ || & \langle \sin(t^2/2), -\cos(t^2/2), t^2/2 \rangle \\ || & | & none of the others \end{array}$
- (b) (2 point) Which of the following vectors is the acceleration vector for $t = 2\pi$?

$\Box \langle 0, -1, 0 \rangle \\ \Box \langle 0, 1, 0 \rangle$	$\begin{bmatrix} \langle 1, 0, 0 \rangle \\ \langle 1, 1, 1 \rangle \end{bmatrix}$	$\begin{bmatrix} \langle 0, 1, 1/2 \rangle \\ \\ \hline \\ none of the others \end{bmatrix}$
(c) (1 point) What is the spe	eed?	
$\Box \sqrt{\sin(t) + \cos(t) + t}$ $\Box \sqrt{1 + t^2}$	$\begin{array}{c} \boxed{} 2\\ \boxed{} \sqrt{2} \end{array}$	$ \ \ \ \ \ \ \ \ \ \ \ \ \$
(d) (1 point) What is the len	gth of the curve from $t =$	0 to $t = 2?$
0	$\Box 2\sqrt{2}$	□ 1/2
$\Box \sqrt{2}$	$\Box 4\sqrt{2}$	none of the others
Exercise 3 (6 point)		
Three complex numbers are g	iven by	
$z_1 = 1 + 2i$, $z_2 = 4 - 2i$ og $z_3 = i^{100}$.		
$z_1 = 1 + 2i$	$z_1, z_2 = 4 - 2i \text{ og } z_3 =$	$= i^{100}$.
$z_1 = 1 + 2i$ (a) (2 point) What is $z_1 + z_2$		$= i^{100}$.
-		= <i>i</i> ¹⁰⁰ .
(a) (2 point) What is $z_1 + z_2$	in polar form?	
(a) (2 point) What is $z_1 + z_2$	in polar form? $\Box 5e^{-i\pi/2}$ $\Box \sqrt{5}$	□ 5
(a) (2 point) What is $z_1 + z_2$ $\Box 1$ $\Box 5e^{i\pi/2}$	in polar form? $\Box 5e^{-i\pi/2}$ $\Box \sqrt{5}$	□ 5
(a) (2 point) What is $z_1 + z_2$ [] 1 [] $5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_1}{z_2}$ in t	in polar form? $\Box 5e^{-i\pi/2}$ $\Box \sqrt{5}$ he standard form <i>a</i> + <i>ib</i> ?	5none of the others
(a) (2 point) What is $z_1 + z_2$ \Box 1 \Box $5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_1}{z_2}$ in the second sec	in polar form? $ \begin{array}{c} 5e^{-i\pi/2} \\ \sqrt{5} \\ \end{array} $ he standard form $a + ib$? $ \begin{array}{c} -1 - i \\ -i \\ \end{array} $	 5 none of the others 5
(a) (2 point) What is $z_1 + z_2$ \Box 1 \Box $5e^{i\pi/2}$ (b) (2 point) What is $\frac{2z_1}{z_2}$ in the second sec	in polar form? $ \begin{array}{c} 5e^{-i\pi/2} \\ \sqrt{5} \\ \end{array} $ he standard form $a + ib$? $ \begin{array}{c} -1 - i \\ -i \\ \end{array} $	 5 none of the others 5

Hint to (c): The principal argument is a polar angle which belongs to the interval $] - \pi, \pi]$.

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$y'' = -4y$$

Below there are given a few functions where c_1 and c_2 are arbitrary real constants. Mark which expression represents the general solution to the differential equation.

- $\begin{array}{c} \boxed{\begin{array}{c} y(t) = c_1 e^{-2t} + c_2 e^{2t} \\ \hline y(t) = c_1 \cos(t) + c_2 \sin(t) \\ \hline y(t) = (c_1 + c_2 t) e^{-2t} \\ \hline y(t) = c_1 + c_2 \end{array}} \end{array} \begin{array}{c} \boxed{\begin{array}{c} y(t) = c_1 e^t + c_2 t \\ \hline y(t) = c_1 \sin(2t) + c_2 \cos(2t) \\ \hline y(t) = (c_1 + c_2 t) e^{2t} \\ \hline y(t) = c_1 + c_2 \\ \hline \end{array}} \end{array}$
- (b) (2 point) Which function $x_p(t)$ is a particular solution to the inhomogeneous differential equation

$$x''(t) = -4x(t) + 5e^t$$

among the following expressions:

- $\begin{array}{c} \square \ x_p(t) = e^{2t} \\ \square \ x_p(t) = e^{-2t} \\ \square \ x_p(t) = e^t \end{array} \qquad \begin{array}{c} \square \ x_p(t) = e^{-t} \\ \square \ x_p(t) = te^t \\ \square \ \text{none of the others} \end{array}$
- (c) (3 point) Mark the solution x(t) to the initial value problem

$$x''(t) = -4x(t) + 5e^t$$
, $x(0) = 0$, $x'(0) = 0$,

among the following expressions:

 $\begin{array}{c} \square \ x(t) = \sin(t) - t\cos(t) \\ \square \ x(t) = -\sin(t) + te^t \\ \square \ x(t) = \sin(2t)/2 + \cos(2t) - e^t \\ \square \ x(t) = \sin(2t)/2 + \cos(2t) - e^t \\ \end{array} \begin{array}{c} \square \ x(t) = t - te^{2t} \\ \square \ none of the others \\ \end{array}$

Exercise 5 (8 point)

Mark if the following statements are true or false:

Exercise 6 (7 point)

A function *f* is for $t \ge 0$ given by

$$f(t) = e^t \sin(t) + t^2.$$

- (a) (3 point) Which of the following expressions correspond to $F(s) = \mathcal{L}(f)(s)$ for s > 1?
 - $\begin{array}{c|c} \frac{2}{s^4} + \frac{s-1}{(s-1)^2 + 1} \\ \hline & \frac{2}{s^3} + \frac{1}{(s-1)^2 + 1} \\ \hline & \frac{2}{s^4} + \frac{2}{(s+1)^2 + 1} \end{array} \\ \hline & \frac{1}{s^4} + \frac{2}{(s+1)^2 + 1} \\ \hline & \hline & \text{none of the others} \end{array}$
- (b) (4 point) A function *F* is for s > 1 given by

$$F(s) = \frac{s}{s^2 - 1}.$$

Which of the following expressions correspond to $f(t) = \mathcal{L}^{-1}(F)(t)$ for $t \ge 0$ (inverse Laplace transform of *F*)?

 $\begin{array}{c} \square \ f(t) = 1 + t^2 \\ \square \ f(t) = e^t + e^{-t} \\ \square \ f(t) = \frac{1}{2}e^{-t}(e^{2t} + 1) \end{array} \begin{array}{c} \square \ f(t) = -e^t + e^{2t} \\ \square \ f(t) = \sin(t) + \cos(t) \\ \square \ \text{none of the others} \end{array}$

Opgave 7 (8 point)

A domain \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy the inequality $x^2 + y^2 \le 1$. The function f is defined on \mathcal{R} and given by f(x, y) = x + y.

(a) (4 point) Which of the following points are inner critical points for f?

$\Box \langle 0, -1 \rangle$	\Box $\langle -1,0 \rangle$
\Box $\langle 1, 0 \rangle$	☐ There are no inner critical points
\Box $\langle 0, 0 \rangle$	none of the others

(b) (2 point) Mark whether the following statement is true or false:

The function *f* evaluated on the boundary of \mathcal{R} takes the same values as the function $g(\theta) = \cos(\theta) + \sin(\theta)$, where $\theta \in [0, 2\pi]$.

- True False
- (c) (2 point) What is the maximal value of *f*?
 - \Box 1 \Box 2 \Box 3 \Box $\sqrt{2}$ \Box $2\sqrt{2}$ \Box none of the others

Exercise 8 (12 point)

A surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0, where

$$F(x, y, z) = x^4 + y^4 - 2z^2$$

(a) (3 point) Which of the following expressions gives the gradient vector ∇F ?

$\Box \langle 4x, 4y, -4z \rangle$	$\Box \langle x^3, y^3, -2 \rangle$
$\Box \langle 4x^2, 4y^2, -4z^2 \rangle$	\Box $\langle 0, 0, 0 \rangle$
$\Box \langle 4x^3, 4y^3, -4z \rangle$	none of the others

(b) (4 point) Which of the following equations represent the tangent plane to \mathcal{F} at the point P = (1, 1, 1)?

$\Box \ 0 = x + y + z$	$\Box z = x + y$	$\Box z = 2x - y$
$\Box x + y - z = 1$	$\Box z = y + 2x - 2$	none of the others

(c) (5 point) From the equation F(x, y, z) = 0, what is the partial derivative $\frac{\partial z}{\partial x}$ at the point *P*?

□ −1	□ −2	2
0	1	none of the others

Exercise 9 (12 point)

A function is given by

$$f(x,y) = \sin(2x+y),$$

where $x \ge 0$ and $y \ge 0$.

(a) (2 point) Mark whether the following statement is true or false: f(x, y) can never be equal to zero.

False

☐ False

True

(b) (2 point) Mark whether the following statement is true or false: f(x, 0) is an increasing function of x.

True

- (c) (4 point) What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P = (0,0) in the direction given by the unit vector $\mathbf{u} = \langle 0, 1 \rangle$?
 - □ 0
 □ 3
 □ 4

 □ 1
 □ 2
 □ none of the others
- (d) (4 point) Which of the following unit vectors point in the direction in which *f* grows fastest at the point *P* (the direction **v** for which $D_{\mathbf{v}}f(P)$ is largest)?

$\left[\left(-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \right]$	$\left \left \left\langle \frac{2\sqrt{5}}{5}, -\frac{1}{\sqrt{5}} \right\rangle \right. \right $	$\left[\left \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \right. \right]$
\Box $\langle 1, 0 \rangle$	$\left[\left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5} \right) \right]$	$\left[\left \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \right\rangle \right]$
$\left[\left \left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle \right.\right]$	\Box $\langle 0,1 \rangle$	none of the others

Exercise 10 (9 point)

A function is given by

$$f(x) = \cos(x^2)$$

for all real numbers *x*.

- (a) (5 point) Mark the correct expression for f''(x) (i.e. *f* twice differentiated)

- (b) (4 point) Which of the following expressions represents the second order Taylor polynomial for f with the expansion point x = 0?
 - \Box 1 + x + x² \Box 1 x + x²/2 \Box 2x + x² \Box 1 + x + x²/2 \Box 1 \Box none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$x(t) = t^2,$$

$$y(t) = \sin(t^3)$$

for all real numbers *t*.

- (a) (2 point) For which value of the parameter *t* does the curve go through the origin?
 - $\begin{array}{c|c}
 \pi & & & & & & \\
 \hline
 2\pi & & & & & \\
 \end{array} \begin{array}{c}
 3\pi & & & & \\
 4\pi & & & & \\
 \end{array} \begin{array}{c}
 0 \\
 \hline
 none \text{ of the others}
 \end{array}$

(b) (4 point) What is the value of the speed when t = 0?

 \Box 0 \Box $\sqrt{2}$ \Box $\sqrt{5}$ \Box 1 \Box $\sqrt{3}$ \Box none of the others

(c) (5 point) What is the acceleration vector at the origin?

Exercise 12 (5 point)

Consider the following initial value problem

$$y'(x) = (x+1) y(x), \quad y(0) = 1.$$

(a) (3 point) Assume that *y* solves the above equation and define

$$f(x) = \ln(y(x)).$$

Which initial value problem solves *f*?

- (b) (2 point) What is y(x)?

$\Box 1+x$	1/(x+1)	$\ln(1 + x + x^2/2)$
$\Box e^x - 1$	$\Box e^{x+x^2/2}$	none of the others