Retake exam in Calculus

19. august 2019

Exercise 1 (6 point)

A function is defined by

$$
f(x, y, z)=\sin \left(x^{2}+y^{2}+z^{2}\right)
$$

for real variables x, y and z.
(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy
$\square z=0$
\square all points are allowed
$\square x^{2}+y^{2}+z^{2}>0$
$\square x y z \neq 0$
$\square x^{2}+y^{2}+z^{2}<0$
\square none of the others
(b) (3 point) Which points (x, y, z) belong to the level surface determined by $f(x, y, z)=2$?
\square A sphere given by $x^{2}+y^{2}+z^{2}=\sin ^{-1}(2)$
\square The xy-plane
\square There are no such points
\square A plane parallel with the xy-plane given by $z=\sin ^{-1}(2)$none of the others

Exercise 2 (6 point)

A parametric curve in space is given by

$$
\mathbf{r}(t)=\langle\sin (t), \cos (t), t\rangle
$$

where the parameter t is an arbitrary real number.
(a) (2 point) What is the velocity vector of the curve?

$\square\langle\sin (t), \cos (t), 1\rangle$	$\square\left\langle\sin \left(t^{2} / 2\right), \cos \left(t^{2} / 2\right), t^{2} / 2\right\rangle$
$\square\langle\cos (t), \sin (t), 1\rangle$	$\square\left\langle\sin \left(t^{2} / 2\right),-\cos \left(t^{2} / 2\right), t^{2} / 2\right\rangle$
$\square\langle\cos (t),-\sin (t), 1\rangle$	\square none of the others

(b) (2 point) Which of the following vectors is the acceleration vector for $t=$ 2π ?
$\square\langle 0,-1,0\rangle$
$\square\langle 1,0,0\rangle$
$\square\langle 0,1,1 / 2\rangle$
$\square\langle 0,1,0\rangle$
$\square\langle 1,1,1\rangle$none of the others
(c) (1 point) What is the speed?$\sqrt{\sin (t)+\cos (t)+t} \square 2$
$\square \sqrt{t+1}$
$\square \sqrt{1+t^{2}}$ $\square \sqrt{2}$
\square none of the others
(d) (1 point) What is the length of the curve from $t=0$ to $t=2$?
$\square 0$
$\square 2 \sqrt{2}$
$1 / 2$
$\square \sqrt{2}$
$\square 4 \sqrt{2}$none of the others

Exercise 3 (6 point)

Three complex numbers are given by

$$
z_{1}=1+2 i, \quad z_{2}=4-2 i \quad \text { og } \quad z_{3}=i^{100}
$$

(a) (2 point) What is $z_{1}+z_{2}$ in polar form?
$\square 1$
$\square 5 e^{-i \pi / 2}$
$\square 5$
$\square 5 e^{i \pi / 2}$
$\square \sqrt{5}$
\square none of the others
(b) (2 point) What is $\frac{2 z_{1}}{z_{2}}$ in the standard form $a+i b$?
$\square 1+i$
$\square-1-i$
$\square 5$
$\square i$
$\square-i$
\square none of the others
(c) (2 point) What is the principal argument of z_{3} ?
$\checkmark 0$$\pi / 2$
\square none of the others

Hint to (c): The principal argument is a polar angle which belongs to the interval $]-\pi, \pi]$.

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$
y^{\prime \prime}=-4 y
$$

Below there are given a few functions where c_{1} and c_{2} are arbitrary real constants. Mark which expression represents the general solution to the differential equation.
$\square y(t)=c_{1} e^{-2 t}+c_{2} e^{2 t}$
$\square y(t)=c_{1} e^{t}+c_{2} t$
$\square y(t)=c_{1} \cos (t)+c_{2} \sin (t)$
$\square y(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)$
$\square y(t)=\left(c_{1}+c_{2} t\right) e^{-2 t}$
$\square y(t)=\left(c_{1}+c_{2} t\right) e^{2 t}$
$\square y(t)=c_{1}+c_{2}$none of the others
(b) (2 point) Which function $x_{p}(t)$ is a particular solution to the inhomogeneous differential equation

$$
x^{\prime \prime}(t)=-4 x(t)+5 e^{t}
$$

among the following expressions:
$\square x_{p}(t)=e^{2 t}$
$\square x_{p}(t)=e^{-t}$
$\square x_{p}(t)=e^{-2 t}$
$\square x_{p}(t)=t e^{t}$
$\square x_{p}(t)=e^{t}$
\square none of the others
(c) (3 point) Mark the solution $x(t)$ to the initial value problem

$$
x^{\prime \prime}(t)=-4 x(t)+5 e^{t}, \quad x(0)=0, \quad x^{\prime}(0)=0,
$$

among the following expressions:
$\square x(t)=\sin (t)-t \cos (t)$
$\square x(t)=-\sin (2 t) / 2-\cos (2 t)+e^{t}$
$\square x(t)=-\sin (t)+t e^{t}$ $\square x(t)=t-t e^{2 t}$
$\square x(t)=\sin (2 t) / 2+\cos (2 t)-e^{t}$ \square none of the others

Exercise 5 (8 point)

Mark if the following statements are true or false:
(a) $(2$ point $)(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$.
\checkmark True
(b) (2 point) $\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2}=i$.
\square True
\square False
(c) (2 point) If $f(x)=\sin (x)$ and $g(t)=\cos (t)$ then $h(t)=f(g(t))$ is differentiable and $h^{\prime}(t)=-\sin (t) \cos (\cos (t))$.
\square TrueFalse
(d) (2 point) $e^{-\ln (x)}=\frac{1}{x}$.
\square True
\square False

Exercise 6 (7 point)

A function f is for $t \geq 0$ given by

$$
f(t)=e^{t} \sin (t)+t^{2}
$$

(a) (3 point) Which of the following expressions correspond to $F(s)=\mathcal{L}(f)(s)$ for $s>1$?
$\square \frac{2}{s^{4}}+\frac{s-1}{(s-1)^{2}+1}$
$\square \frac{1}{s^{3}}+\frac{1}{(s+1)^{2}+1}$

- $\frac{2}{s^{3}}+\frac{1}{(s-1)^{2}+1}$
$\square \frac{2}{s^{3}}+\frac{2}{(s+1)^{2}+1}$
$\square \frac{1}{s^{4}}+\frac{2}{(s+1)^{2}+1}$
\square none of the others
(b) (4 point) A function F is for $s>1$ given by

$$
F(s)=\frac{s}{s^{2}-1} .
$$

Which of the following expressions correspond to $f(t)=\mathcal{L}^{-1}(F)(t)$ for $t \geq 0$ (inverse Laplace transform of F)?
$\square f(t)=1+t^{2}$
$\square f(t)=-e^{t}+e^{2 t}$
$\square f(t)=e^{t}+e^{-t}$
$\square f(t)=\sin (t)+\cos (t)$
$\square f(t)=\frac{1}{2} e^{-t}\left(e^{2 t}+1\right)$none of the others

Opgave 7 (8 point)

A domain \mathcal{R} in the plane consists of all the points with coordinates (x, y) which satisfy the inequality $x^{2}+y^{2} \leq 1$. The function f is defined on \mathcal{R} and given by $f(x, y)=x+y$.
(a) (4 point) Which of the following points are inner critical points for f ?
$\square\langle 0,-1\rangle$
$\square\langle 1,0\rangle$
$\square\langle 0,0\rangle$
$\square\langle-1,0\rangle$
\checkmark There are no inner critical points \square none of the others
(b) (2 point) Mark whether the following statement is true or false:

The function f evaluated on the boundary of \mathcal{R} takes the same values as the function $g(\theta)=\cos (\theta)+\sin (\theta)$, where $\theta \in[0,2 \pi]$.
\square True
\square False
(c) (2 point) What is the maximal value of f ?
$\square 1$3
$\square \sqrt{2}$ $\square 2 \sqrt{2}$ \square none of the others

Exercise 8 (12 point)

A surface \mathcal{F} in space is determined by the equation $F(x, y, z)=0$, where

$$
F(x, y, z)=x^{4}+y^{4}-2 z^{2}
$$

(a) (3 point) Which of the following expressions gives the gradient vector ∇F ?
$\square\langle 4 x, 4 y,-4 z\rangle$
$\square\left\langle x^{3}, y^{3},-2\right\rangle$
$\square\left\langle 4 x^{2}, 4 y^{2},-4 z^{2}\right\rangle$
$\square\langle 0,0,0\rangle$
$\square\left\langle 4 x^{3}, 4 y^{3},-4 z\right\rangle$
\square none of the others
(b) (4 point) Which of the following equations represent the tangent plane to \mathcal{F} at the point $P=(1,1,1)$?
$\square 0=x+y+z$
$\square z=x+y$
$\square z=2 x-y$
$\square x+y-z=1$$z=y+2 x-2$none of the others
(c) (5 point) From the equation $F(x, y, z)=0$, what is the partial derivative $\partial z / \partial x$ at the point P ?
$\square-1$
$\square-2$
$\square 0$
$\square 1$
\square none of the others

Exercise 9 (12 point)

A function is given by

$$
f(x, y)=\sin (2 x+y)
$$

where $x \geq 0$ and $y \geq 0$.
(a) (2 point) Mark whether the following statement is true or false: $f(x, y)$ can never be equal to zero.
\square True
\square False
(b) (2 point) Mark whether the following statement is true or false: $f(x, 0)$ is an increasing function of x.
\square True
\square False
(c) (4 point) What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(0,0)$ in the direction given by the unit vector $\mathbf{u}=\langle 0,1\rangle$?
$\square 0$
$\square 3$
4
$\square 1$none of the others
(d) (4 point) Which of the following unit vectors point in the direction in which f grows fastest at the point P (the direction \mathbf{v} for which $D_{\mathbf{v}} f(P)$ is largest)?
$\square\left\langle-\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\left\langle\frac{2 \sqrt{5}}{5},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\square\langle 1,0\rangle$

- $\left\langle\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right\rangle$
$\square\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$
$\square\langle 0,1\rangle$
\square none of the others

Exercise 10 (9 point)

A function is given by

$$
f(x)=\cos \left(x^{2}\right)
$$

for all real numbers x.
(a) (5 point) Mark the correct expression for $f^{\prime \prime}(x)$ (i.e. f twice differentiated)
$\square-4 \cos \left(x^{2}\right)$ $\square 2 \cos (2 x)$
$\square-x^{4} \cos \left(x^{2}\right)$ $2 \sin \left(x^{2}\right)-x^{2} \cos \left(x^{2}\right)$
$\square-2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right)$ \square none of the others
(b) (4 point) Which of the following expressions represents the second order Taylor polynomial for f with the expansion point $x=0$?
$\square 1+x+x^{2}$
$\square 1-x+x^{2} / 2$
$\square 2 x+x^{2}$
$\square 1+x+x^{2} / 2$

- 1none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$
\begin{aligned}
& x(t)=t^{2} \\
& y(t)=\sin \left(t^{3}\right)
\end{aligned}
$$

for all real numbers t.
(a) (2 point) For which value of the parameter t does the curve go through the origin?
$\square \pi$
$\square 2 \pi$
$\square 3 \pi$
$\square 4 \pi$
$\square 0$
\square
none of the others
(b) (4 point) What is the value of the speed when $t=0$?
$\checkmark 0$
$\square \sqrt{2}$
$\square \sqrt{5}$
$\square 1$
$\square \sqrt{3}$
none of the others
(c) (5 point) What is the acceleration vector at the origin?
$\square\langle 0,0\rangle$
$\square\langle 1,0\rangle$
$\square\langle 0,1\rangle$
$\square\langle 1,1\rangle$
$\square\langle 2,0\rangle$
\square none of the others

Exercise 12 (5 point)

Consider the following initial value problem

$$
y^{\prime}(x)=(x+1) y(x), \quad y(0)=1 .
$$

(a) (3 point) Assume that y solves the above equation and define

$$
f(x)=\ln (y(x))
$$

Which initial value problem solves f ?
$\square f^{\prime}(x)=x+1, \quad f(0)=1$
$\square f^{\prime}(x)=e^{x}, \quad f(0)=0$
$\square f^{\prime}(x)=-x-1, \quad f(0)=1$
$\square f^{\prime}(x)=x+1, \quad f(0)=0$
$\square f^{\prime}(x)=1 /(x+1), \quad f(0)=0$ none of the others
(b) (2 point) What is $y(x)$?
$\square 1+x$
$\square e^{x}-1$
$\square 1 /(x+1)$
$\square \ln \left(1+x+x^{2} / 2\right)$
$\square e^{x+x^{2} / 2}$
none of the others

