Exam in Calculus

14. june 2019

Exercise 1 (6 point)

A function is defined as

$$f(x,y,z) = 1 + \frac{z^2}{x^2 + y^2}$$

where x and y are real variables

where x and y are real variables.
(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy:
$\Box z \neq 0$
$ yx \neq 0 $
none of the others
(b) (3 point) What is the level surface defined by $f(x, y, z) = 1$?
\square A sphere given by $x^2 + y^2 + z^2 = 1$
☐ The xy-plane without the origin
\square A paraboloid given by $z = x^2 + y^2$
\square A plane parallel with the xy-plane given by $z=1$
none of the others
Exercise 2 (6 point)
A parametric curve in space is given by
$\mathbf{r}(t) = \langle \sin(2t), \cos(2t), 2t \rangle$
where the parameter t can be any real number.
(a) (2 point) What is the velocity vector of the curve?

(b) (2 point) Which of the following vectors is the acceleration vector at $t = \pi$?

(c)	(1 point) What is the vel	ocity?						
		$\square 2\sqrt{2}$						
		4	none of the others					
(d)	(d) (1 point) What is the length of the curve between $t=\pi$ and $t=2\pi$?							
	π	$2\sqrt{2}\pi$	5 π					
	<u></u> 2π	\Box 4π	none of the others					
Exe	Exercise 3 (6 point)							
Thre	e complex numbers are g	riven by						
$z_1 = 1 + i$, $z_2 = 2i^3$ og $z_3 = i^{10}$.								
	$z_1 = 1 +$	$-i$, $z_2 = 2i^3$ og $z_3 =$	i^{10} .					
(a)	$z_1 = 1 + $ (2 point) What is $z_1 + z_2$		i^{10} .					
(a)	_		i^{10} .					
(a)	(2 point) What is $z_1 + z_2$	in polar form?						
	(2 point) What is $z_1 + z_2$	in polar form? $\Box -2e^{i\pi/4}$ $\Box \sqrt{2}e^{\frac{5\pi}{4}i}$						
	(2 point) What is $z_1 + z_2$	in polar form? $\Box -2e^{i\pi/4}$ $\Box \sqrt{2}e^{\frac{5\pi}{4}i}$						
	(2 point) What is $z_1 + z_2$	in polar form?						
(b)	(2 point) What is $z_1 + z_2$	in polar form?						
(b)	(2 point) What is $z_1 + z_2$	in polar form?						
(b)	(2 point) What is $z_1 + z_2$	in polar form?	$\boxed{ \sqrt{2}e^{-i\pi/4} }$ $$ none of the others $$ $e^{-i\pi}$ $$ none of the others					

Hint to (c): The principal argument is a polar angle which belongs to the interval $]-\pi,\pi]$. A useful identity is $\arg(z^n)=n$ $\arg(z)$.

Exercise 4 (10 point)

1	' '	/ -			1		1	1	differen	. 1		•	•	1
•	~ 1	15	naint	1 /1	hamaa	0110	cocond	Ordor	dittoron	t121 00	7112t101	10	α_{117000}	ht.
1	aı	1.7	DONNE	, ,	11011102	eneous	SECULIA	oruei	umeren	uai et	iualioni	כו	217611	ν
١	,	(-	P	,									0	~ ,

$$y''=2y'-y.$$

Below you may find a few expressions where c_1 and c_2 are arbitrary real constants. Mark the expression which gives the general solution to the differential equation.

(b) (2 point) Which function $x_p(t)$ is a particular solution to the inhomogeneous differential equation

$$x''(t) = 2x'(t) - x(t) + 1$$

among the following expressions:

(c) (3 point) Mark the solution x(t) to the initial value problem

$$x''(t) = 2x'(t) - x(t) + 1$$
, $x(0) = 0$, $x'(0) = 1$,

among the following expressions:

Exercise 5 (8 point)

Answer whether the following statements are true or false:

(a) (2 point) The velocity vector of a curve can never have a zero length.

☐ True

☐ False

(b) (2 point) When a points moves on a straight line, the curvature is infinitely large.

☐ True

☐ False

(c) (2 point) If $f(x) = \cos(x)$ and $g(t) = e^t$, then h(t) = f(g(t)) is differentiable and $h'(t) = -\sin(e^t)$.

☐ True

☐ False

(d) (2 point) The function $f(x) = \ln(x)$ where 0 < x < 1 has an inverse function.

☐ True

☐ False

Exercise 6 (7 point)

A function f is given by

$$f(t) = e^{-t}\cos(2t) + t^3$$

where $t \geq 0$.

(a) (3 point) Which of the expressions below correspond to $F(s) = \mathcal{L}(f)(s)$ when s > 0?

 $\frac{2}{s^3} + \frac{1}{(s+1)^2+4}$

 $\frac{6}{s^4} + \frac{s+1}{(s+1)^2+4}$

 $\frac{2}{s^3} + \frac{2}{(s+1)^2+4}$

 $\frac{6}{s^4} + \frac{2}{(s+1)^2+4}$

none of the others

(b) (4 point) A function *F* is given by

$$F(s) = \frac{2s+1}{(s+1)(s+2)}$$

where s > -1. Which of the following expressions correspond to $f(t) = \mathcal{L}^{-1}(F)(t)$ for $t \geq 0$ (the inverse Laplace transformation of F)?

f(t) = -1 + 2t	$ f(t) = -e^t + 3e^{2t} $					
	f(t) = 1 + 2t					
	none of the others					
Exercise 7 (8 point)						
A domain \mathcal{R} in the plane consists of all the obey the inequality $x^2 + (y-1)^2 \le 1$. The given by $f(x,y) = x^2$.	points with coordinates (x,y) which he function f is defined on $\mathcal R$ and is					
(a) (2 point) Which of the following point	nts are inner critical points for f ?					
	none of the others					
(b) (4 point) Which of the following function $\langle x, y \rangle$ belongs to the boundary of \mathcal{R} ?	tions take the same values as f , when					
$ g(y) = (y-1)^2 \text{ where } -1 \le y \le $	$ g(x) = 1 + x^2 \text{ where } 0 \le x \le 2 $					
0	$ g(x) = x^2 \text{ where } -1 \le x \le 1 $					
	none of the others					
(c) (2 point) What is the maximal value	of <i>f</i> ?					
□ 1	□ 5					
□ 2	none of the others					
Exercise 8 (12 point)						
A surface $\mathcal F$ in the space is determined by	the equation $F(x, y, z) = 0$, where					
$F(x, y, z) = 2y\sin(x) + y^2 - z^2.$						
(a) (3 point) Which of the following expression ∇F ?	pressions correspond to the gradient					
	none of the others					
(b) (3 point) Which of the following equal \mathcal{F} at the point $P = (0, 1, 1)$?	ations determine the tangent plane to					

		$\Box z = x + y$	$\Box z = x - y$		
			none of the others		
(c)	(6 point) From the equal $\partial z/\partial x$ at the point <i>P</i> ?	tion $F(x,y,z) = 0$, what	is the partial derivative		
	□ -1	□ -2	<u> </u>		
	<u> </u>	<u> </u>	none of the others		
Exeı	rcise 9 (12 point)				
A fui	nction is given by	$f(x,y) = \sin(xy),$			
wher	$e x \ge 0 \text{ and } y \ge 0.$				
(a)	(2 point) Mark whether cannot be less than zero.	the following statemen	t is true or false: $f(x,y)$		
	☐ True	☐ False			
(b)	(2 point) Mark whether the following statement is true or false: $f(x,y)$ can never be equal to $1/2$.				
	☐ True	☐ False			
(c)		ectional derivative $D_{\mathbf{u}}f(\mathbf{x})$ the unit vector $\mathbf{u} = \langle 0, 1 \rangle$			
	□ 0	□ 3	4		
	<u> </u>	□ 2	none of the others		
(d)	d) (4 point) Which of the following vectors has the same direction as the c in which f grows fastest at point P (the direction \mathbf{v} for which $D_{\mathbf{v}}f(P)$ maximal)?				
	$\left[\left(-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \right]$	$\left[\left\langle \frac{2\sqrt{5}}{5}, -\frac{1}{\sqrt{5}} \right\rangle \right]$	$\left[\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \right]$		
			none of the others		
Exei	rcise 10 (9 point)				
A fui	nction is given by	$f(x) = \sin(x^2)$			
for al	ll real numbers x .				
(a)	(5 point) Mark the corre ferentiated)	ct expression for $f''(x)$ (v	which means f twice dif-		

	$\begin{array}{c} \boxed{2\sin(2x)} \\ \boxed{2\sin(x^2) - 4x^2\cos(x^2)} \\ \boxed{none of the others} \end{array}$
--	--

(b) (4 point) Which of the following expressions corresponds to the second order Taylor polynomial for f with the expansion point a = 0?

none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$x(t)=2t+1,$$

$$y(t) = \sin(t)$$

for all real numbers t.

(a)	(2 point) For which value of the	parameter t does the α	curve go through the
	point $P = (1.0)$?		

(b) (4 point) What is the value of the velocity when t = 0?

 \Box 0

 $\prod \sqrt{2}$

 \Box 1

 \square none of the others

(c) (5 point) What is the value of the curvature at *P*?

Exercise 12 (5 point)

Consider the following initial value problem

$$y'(x) = x y^2(x), y(0) = 1.$$

(a) (3 point) Assume that y solves the above equation, and define

$$f(x) = \frac{1}{y(x)}.$$

Which equation does f satisfy?

(b) (2 point) What is y(x)?