Exam in Calculus

14. june 2019

Exercise 1 (6 point)

A function is defined as

$$
f(x, y, z)=1+\frac{z^{2}}{x^{2}+y^{2}}
$$

where x and y are real variables.
(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy:
$\square z \neq 0$
$\square x+y>0$
$\square x^{2}+y^{2} \geq 1$
\square The whole space without the z-axis
$\square y x \neq 0$
\square none of the others
(b) (3 point) What is the level surface defined by $f(x, y, z)=1$?
\square A sphere given by $x^{2}+y^{2}+z^{2}=1$
\square The xy-plane without the origin
\square A paraboloid given by $z=x^{2}+y^{2}$
\square A plane parallel with the xy-plane given by $z=1$
\square none of the others

Exercise 2 (6 point)

A parametric curve in space is given by

$$
\mathbf{r}(t)=\langle\sin (2 t), \quad \cos (2 t), \quad 2 t\rangle
$$

where the parameter t can be any real number.
(a) (2 point) What is the velocity vector of the curve?
$\square\langle 2 \sin (2 t), 2 \cos (2 t), 2\rangle$
$\square\langle 2 \cos (2 t), 2 \sin (2 t), 2\rangle$
$\square\langle 2 \cos (2 t),-2 \sin (2 t), 2 t\rangle$
\square none of the others
(b) (2 point) Which of the following vectors is the acceleration vector at $t=\pi$?
$\square\langle 0,-1,0\rangle$
$\square\langle 0,-2,0\rangle$
$\square\langle 0,-2,1\rangle$
V $\langle 0,-4,0\rangle$
$\square\langle-4,0,1\rangle$none of the others
(c) (1 point) What is the velocity?
$\square \sqrt{t}$
$\checkmark 2 \sqrt{2}$
$\square \sqrt{e^{i 2 t}}$
$\square \sqrt{1+t^{2}}$
$\square 4$none of the others
(d) (1 point) What is the length of the curve between $t=\pi$ and $t=2 \pi$?
$\square \pi$
■ $2 \sqrt{2} \pi$
$\square 5 \pi$
$\square 2 \pi$
$\square 4 \pi$none of the others

Exercise 3 (6 point)

Three complex numbers are given by

$$
z_{1}=1+i, \quad z_{2}=2 i^{3} \quad \text { og } \quad z_{3}=i^{10}
$$

(a) (2 point) What is $z_{1}+z_{2}$ in polar form?
$\square 1$
$\square-2 e^{i \pi / 4}$
(v) $\sqrt{2} e^{-i \pi / 4}$
$\square 2 e^{-i \pi / 4}$
$\square \sqrt{2} e^{\frac{5 \pi}{4} i}$
\square none of the others
(b) (2 point) What is $\frac{z_{1}}{z_{3}}$ in the standard form $a+i b$?
$\square 1-i$
, $-1-i$
$\square e^{-i \pi}$
$\square 1+i$
$1+i^{9}$
\square none of the others
(c) (2 point) What is the principal argument of z_{1}^{5} ?
0
$\square \pi$
$\square 3 \pi / 4$
($-3 \pi / 4$
none of the others

Hint to (c): The principal argument is a polar angle which belongs to the interval $]-\pi, \pi]$. A useful identity is $\arg \left(z^{n}\right)=n \arg (z)$.

Exercise 4 (10 point)

(a) (5 point) A homogeneous second order differential equation is given by

$$
y^{\prime \prime}=2 y^{\prime}-y .
$$

Below you may find a few expressions where c_{1} and c_{2} are arbitrary real constants. Mark the expression which gives the general solution to the differential equation.
$\square y(t)=c_{1} e^{-t}+c_{2} e^{t}$
$\square y(t)=c_{1} e^{t}+c_{2} t$
$\square y(t)=c_{1} \cos (t)+c_{2} \sin (t)$
$\square y(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)$
$\square y(t)=c_{1}+c_{2} t$
$\square y(t)=\left(c_{1}+c_{2} t\right) e^{t}$
$\square y(t)=c_{1}+c_{2} t^{2}$
\square none of the others
(b) (2 point) Which function $x_{p}(t)$ is a particular solution to the inhomogeneous differential equation

$$
x^{\prime \prime}(t)=2 x^{\prime}(t)-x(t)+1
$$

among the following expressions:
$\square x_{p}(t)=t$
$\square x_{p}(t)=-t^{2}$
$\square x_{p}(t)=t+1$
$\square x_{p}(t)=t-e^{t}$
$\square x_{p}(t)=1$ \square none of the others
(c) (3 point) Mark the solution $x(t)$ to the initial value problem

$$
x^{\prime \prime}(t)=2 x^{\prime}(t)-x(t)+1, \quad x(0)=0, \quad x^{\prime}(0)=1,
$$

among the following expressions:
$\square x(t)=e^{t}(2 t+1)-1$
$\square x(t)=e^{t} t$
$\square x(t)=-4 t^{2}$
$\square x(t)=t-e^{2 t}+1$
$\square x(t)=t-t e^{t}$
$\square x(t)=0$
$\square x(t)=e^{t}(2 t-1)+1$
\square none of the others

Exercise 5 (8 point)

Answer whether the following statements are true or false:
(a) (2 point) The velocity vector of a curve can never have a zero length.
True
\square False
(b) (2 point) When a points moves on a straight line, the curvature is infinitely large.
\square True
\checkmark False
(c) (2 point) If $f(x)=\cos (x)$ and $g(t)=e^{t}$, then $h(t)=f(g(t))$ is differentiable and $h^{\prime}(t)=-\sin \left(e^{t}\right)$.True \square False
(d) (2 point) The function $f(x)=\ln (x)$ where $0<x<1$ has an inverse function.
\square True

Exercise 6 (7 point)

A domain \mathcal{R} in the plane can be represented with the help of the inequality $x^{2}+(y-1)^{2} \leq 1$.
(a) (1 point) Which of the following curves describe the boundary of \mathcal{R} ?a parabola with is top point at $\langle 0,1\rangle$
\square a circle with center at $\langle 0,1\rangle$ and radius 1
\square a triangle with corners at the origin, $\langle 0,1\rangle$ and $\langle 1,0\rangle$
\square a square with side length 1 and center at $\mathrm{i}\langle 0,1\rangle$
\square none of the others
(b) (2 point) Which of the following inequalities show that a point with coordinates $(x, y)=(r \cos (\theta), r \sin (\theta))$ belongs to \mathcal{R} ?
$\square r \leq 2, \quad 0 \leq \theta \leq \pi$
$\square 0 \leq r \leq 1, \quad 0 \leq \theta \leq \pi$
$\square 0 \leq r \leq 2 \cos (\theta), \quad 0 \leq \theta \leq \pi$
$\square r \leq 1$
$\square 0 \leq r \leq 2 \sin (\theta), \quad 0 \leq \theta \leq \pi$
\square none of the others
(c) (4 point) The domain \mathcal{R} models a plate with mass density $\delta(x, y)=y$. Which of the following integrals give the mass of the plate?
$\square \int_{0}^{\pi} \int_{0}^{2 \cos (\theta)} r^{2} \cos (\theta) d r d \theta$
$\square \int_{0}^{\pi} \int_{0}^{2} r \sin (\theta) d r d \theta$
■ $\int_{0}^{\pi} \int_{0}^{2 \sin (\theta)} r^{2} \sin (\theta) d r d \theta$
$\square \int_{0}^{\pi} \int_{0}^{2 \sin (\theta)} r \sin (\theta) d r d \theta$
$\square \int_{0}^{2 \pi} \int_{0}^{1} r \sin (\theta) d r d \theta$
\square none of the others

Exercise 7 (8 point)

A domain \mathcal{R} in the plane consists of all the points with coordinates (x, y) which obey the inequality $x^{2}+(y-1)^{2} \leq 1$. The function f is defined on \mathcal{R} and is given by $f(x, y)=x^{2}$.
(a) (2 point) Which of the following points are inner critical points for f ?
$\square\langle 0,-1\rangle$
$\square\langle t, 0\rangle$ where $0<t<2$
$\square\langle 1,0\rangle$

- $\langle 0, t\rangle$ where $0<t<2$
$\square\langle t, t\rangle$ where $0<t<2$
\square none of the others
(b) (4 point) Which of the following functions take the same values as f, when $\langle x, y\rangle$ belongs to the boundary of \mathcal{R} ?
$\square g(y)=(y-1)^{2}$ where $-1 \leq y \leq$
$\square g(x)=1+x^{2}$ where $0 \leq x \leq 2$
$\begin{array}{ll}0 & \square \\ g(y)=y^{2} \text { where } 0 \leq y \leq 2 & \boxtimes g(x)=x^{2} \text { where }-1 \leq x \leq 1\end{array}$
$\square g(y)=y^{2}$ where $0 \leq y \leq 2$
$\square g(y)=1-y^{2}$ where $0 \leq y \leq 2$
(c) (2 point) What is the maximal value of f ?
(1
$\square 3$
$\square 5$
$\square 2$$\square$ none of the others

Exercise 8 (12 point)

A surface \mathcal{F} in the space is determined by the equation $F(x, y, z)=0$, where

$$
F(x, y, z)=2 y \sin (x)+y^{2}-z^{2} .
$$

(a) (3 point) Which of the following expressions correspond to the gradient vector ∇F ?
$\square\langle-2 y \cos (x), 2 \sin (x)+2 y,-2 z\rangle \quad \square\langle 2 y \cos (x), 2 \sin (x)+2 y,-2 z\rangle$
$\square\langle 2 y \cos (x)+2 \sin (x), 2 y,-2 z\rangle \quad \square\langle 0,0,0\rangle$
$\square\langle 2 y \cos (x)+2 \sin (x), 0,-2 z\rangle \quad \square$ none of the others
(b) (3 point) Which of the following equations determine the tangent plane to \mathcal{F} at the point $P=(0,1,1)$?
$\square 2=x+y+z$
($z=x+y$
$\square z=x-y$
$\square 2 z=x+2 y$
$\square z=y+2 x$none of the others
(c) (6 point) From the equation $F(x, y, z)=0$, what is the partial derivative $\partial z / \partial x$ at the point P ?
$\square-1$
$\square-2$
2
$\square 0$
$\square 1$
\square none of the others

Exercise 9 (12 point)

A function is given by

$$
f(x, y)=\sin (x y),
$$

where $x \geq 0$ and $y \geq 0$.
(a) (2 point) Mark whether the following statement is true or false: $f(x, y)$ cannot be less than zero.
\square True
\square False
(b) (2 point) Mark whether the following statement is true or false: $f(x, y)$ can never be equal to $1 / 2$.
True
(c) (4 point) What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(0,1)$ in the direction given by the unit vector $\mathbf{u}=\langle 0,1\rangle$?
$\checkmark 0$
$\square 3$ 4
2 none of the others
(d) (4 point) Which of the following vectors has the same direction as the one in which f grows fastest at point P (the direction \mathbf{v} for which $D_{\mathbf{v}} f(P)$ is maximal)?
$\square\left\langle-\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\left\langle\frac{2 \sqrt{5}}{5},-\frac{1}{\sqrt{5}}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\checkmark\langle 1,0\rangle$
$\square\left\langle\frac{\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}\right\rangle$
$\square\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\square\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
$\square\langle 0,1\rangle$none of the others

Exercise 10 (9 point)

A function is given by

$$
f(x)=\sin \left(x^{2}\right)
$$

for all real numbers x.
(a) (5 point) Mark the correct expression for $f^{\prime \prime}(x)$ (which means f twice differentiated)

$\square-4 \sin \left(x^{2}\right)$	$\square 2 \sin (2 x)$
$\square-x^{4} \sin \left(x^{2}\right)$	$\square 2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right)$
$\square 2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)$	\square none of the others

(b) (4 point) Which of the following expressions corresponds to the second order Taylor polynomial for f with the expansion point $a=0$?
$\square x+x^{2}$
$\square-x+x^{2}$
$\square 2 x+x^{2}$
$\square 1+x+x^{2} / 2$
$\square x^{2}$
\square none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$
\begin{aligned}
& x(t)=2 t+1, \\
& y(t)=\sin (t)
\end{aligned}
$$

for all real numbers t.
(a) (2 point) For which value of the parameter t does the curve go through the point $P=(1,0)$?
$\square{ }_{\square} 0$
$\pi$$\square 4 \pi$
3π
none of the others
(b) (4 point) What is the value of the velocity when $t=0$?
0
$\square \sqrt{2}$
$\square \sqrt{5}$
1
$\square \sqrt{ } 3$none of the others
(c) (5 point) What is the value of the curvature at P ?
\square
\square
\square
$1 \sqrt{27}$
$\square 1 / \sqrt{125}$
$2 / \sqrt{125}$
none of the others

Exercise 12 (5 point)

Consider the following initial value problem

$$
y^{\prime}(x)=x y^{2}(x), \quad y(0)=1 .
$$

(a) (3 point) Assume that y solves the above equation, and define

$$
f(x)=\frac{1}{y(x)} .
$$

Which equation does f satisfy?$\square f^{\prime}(x)=x, \quad f(0)=1$$f^{\prime}(x)=x^{2}, \quad f(0)=0$
$\square f^{\prime}(x)=-x, \quad f(0)=1$
$\square f^{\prime}(x)=x, \quad f(0)=0$
$f^{\prime}(x)=1, \quad f(0)=1$
none of the others
(b) (2 point) What is $y(x)$?$1+x$
V $2 /\left(2-x^{2}\right)$
$1 /\left(1-x^{2}\right)$
$\square 1 /(1+x)$
$\square 2 /\left(2+x^{2}\right)$
\square none of the others

