Exam in Calculus

14. june 2019

Exercise 1 (6 point)

A function is defined as

$$f(x,y,z) = 1 + \frac{z^2}{x^2 + y^2}$$

There x and y are real variables.
(a) (3 point) The domain of definition of f consists of all the points (x, y, z) which satisfy:
$\Box z \neq 0$
none of the others
(b) (3 point) What is the level surface defined by $f(x, y, z) = 1$?
\square A sphere given by $x^2 + y^2 + z^2 = 1$
☑ The xy-plane without the origin
\square A paraboloid given by $z = x^2 + y^2$
\square A plane parallel with the xy-plane given by $z=1$
none of the others
xercise 2 (6 point)
xercise 2 (6 point)

\mathbf{E}

A parametric curve in space is given by

$$\mathbf{r}(t) = \langle \sin(2t), \cos(2t), 2t \rangle$$

where the parameter t can be any real number.

(a) (2 point) What is the velocity vector of the curve?

(b) (2 point) Which of the following vectors is the acceleration vector at $t = \pi$?

(c)	(1 point) What is the vel	ocity?				
		\bigcirc 2 $\sqrt{2}$				
	$\sqrt{1+t^2}$	☐ 4	none of the others			
(d)	(d) (1 point) What is the length of the curve between $t = \pi$ and $t = 2\pi$?					
	π	$\boxed{2}\sqrt{2}\pi$	\Box 5π			
	<u>Σ</u> π	\Box 4π	none of the others			
Exe	rcise 3 (6 point)					
Thre	e complex numbers are g	iven by				
	~. — 1 ।	$z_1 + i$, $z_2 = 2i^3$ og $z_3 = i$	<i>:</i> 10			
	21 - 1 +	$z_1, z_2 = z_1$ og $z_3 = z_3$	<i>l</i> .			
(a)	$z_1 - 1 + z_1$ (2 point) What is $z_1 + z_2$					
(a)	_		$\sqrt{2}e^{-i\pi/4}$			
(a)	(2 point) What is $z_1 + z_2$	in polar form?				
	(2 point) What is $z_1 + z_2$	in polar form? $\Box -2e^{i\pi/4}$ $\Box \sqrt{2}e^{\frac{5\pi}{4}i}$	$\sqrt{2}e^{-i\pi/4}$			
	(2 point) What is $z_1 + z_2$	in polar form? $\Box -2e^{i\pi/4}$ $\Box \sqrt{2}e^{\frac{5\pi}{4}i}$	$\sqrt{2}e^{-i\pi/4}$			
	(2 point) What is $z_1 + z_2$	in polar form?	$\sqrt{2}e^{-i\pi/4}$ none of the others			
(b)	(2 point) What is $z_1 + z_2$	in polar form?	$\sqrt{2}e^{-i\pi/4}$ \square none of the others \square $e^{-i\pi}$			
(b)	(2 point) What is $z_1 + z_2$	in polar form?	$\sqrt{2}e^{-i\pi/4}$ \square none of the others \square $e^{-i\pi}$			
(b)	(2 point) What is $z_1 + z_2$ \square 1 \square $2e^{-i\pi/4}$ (2 point) What is $\frac{z_1}{z_3}$ in the \square 1 - i \square 1 + i (2 point) What is the primary z_1	in polar form?	$\sqrt{2}e^{-i\pi/4}$ \square none of the others $\square e^{-i\pi}$ \square none of the others			

Hint to (c): The principal argument is a polar angle which belongs to the interval $]-\pi,\pi]$. A useful identity is $\arg(z^n)=n$ $\arg(z)$.

Exercise 4 (10 point)

1	` \	/ -			1		1	1	differen	. 1		•	•	1
•	~ 1	15	naint	1 /1	hamaa	0110	cocond	Ordor	dittoron	t121 00	7112t101	10	α_{117000}	ht.
1	aı	1.7	DONNE	, ,	11011102	eneous	SECULIA	oruei	umeren	uai et	iualioni	כו	217611	ν
١	,	(-	P	,									0	~ ,

$$y''=2y'-y.$$

Below you may find a few expressions where c_1 and c_2 are arbitrary real constants. Mark the expression which gives the general solution to the differential equation.

$$y(t) = c_1 \cos(t) + c_2 \sin(t)$$
 $y(t) = c_1 \sin(2t) + c_2 \cos(2t)$

$$y(t) = c_1 + c_2 t$$
 $y(t) = (c_1 + c_2 t)e^t$

$$y(t) = c_1 + c_2 t^2$$
 none of the others

(b) (2 point) Which function $x_p(t)$ is a particular solution to the inhomogeneous differential equation

$$x''(t) = 2x'(t) - x(t) + 1$$

among the following expressions:

(c) (3 point) Mark the solution x(t) to the initial value problem

$$x''(t) = 2x'(t) - x(t) + 1$$
, $x(0) = 0$, $x'(0) = 1$,

among the following expressions:

$$\[\[\] x(t) = e^t(2t-1) + 1 \]$$
 none of the others

Exercise 5 (8 point)

Answer whether the following statements are true or false:

- (a) (2 point) The velocity vector of a curve can never have a zero length. ☐ True False (b) (2 point) When a points moves on a straight line, the curvature is infinitely large. ☐ True **V** False (c) (2 point) If $f(x) = \cos(x)$ and $g(t) = e^t$, then h(t) = f(g(t)) is differentiable and $h'(t) = -\sin(e^t)$. ☐ True **✓** False (d) (2 point) The function $f(x) = \ln(x)$ where 0 < x < 1 has an inverse function. ✓ True ☐ False Exercise 6 (7 point) A domain \mathcal{R} in the plane can be represented with the help of the inequality $x^2 + (y - 1)^2 \le 1$. (a) (1 point) Which of the following curves describe the boundary of \mathbb{R} ?
 - \square a parabola with is top point at $\langle 0, 1 \rangle$ \square a circle with center at (0,1) and radius 1 \square a triangle with corners at the origin, $\langle 0, 1 \rangle$ and $\langle 1, 0 \rangle$ \square a square with side length 1 and center at i $\langle 0, 1 \rangle$ \square none of the others
 - (b) (2 point) Which of the following inequalities show that a point with coordinates $(x, y) = (r \cos(\theta), r \sin(\theta))$ belongs to \mathbb{R} ?
 - $\begin{array}{lll} \boxed{ & r \leq 2, \quad 0 \leq \theta \leq \pi & \qquad & \boxed{ } \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq \pi \\ \\ \boxed{ & 0 \leq r \leq 2\cos(\theta), \quad 0 \leq \theta \leq \pi & \qquad } \boxed{ & r \leq 1 \\ \\ \boxed{ & 0 \leq r \leq 2\sin(\theta), \quad 0 \leq \theta \leq \pi & \qquad } \boxed{ & none of the others} \end{array}$
 - (c) (4 point) The domain \mathcal{R} models a plate with mass density $\delta(x,y) = y$. Which of the following integrals give the mass of the plate?

- 0 - 0	$r^{2}\cos(\theta)dr d\theta$ $r^{2}\sin(\theta)dr d\theta$ $\sin(\theta)dr d\theta$	$ \Box \int_0^{\pi} \int_0^2 r \sin(\theta) dr d\theta $ $ \Box \int_0^{\pi} \int_0^{2 \sin(\theta)} r \sin(\theta) dr d\theta $ $ \Box \text{ none of the others} $					
Exercise 7 (8 pc	oint)						
A domain \mathcal{R} in the obey the inequality given by $f(x,y) = 0$	$y^2x^2 + (y-1)^2 \le 1$. The	e points with coordinates (x,y) which ne function f is defined on $\mathcal R$ and is					
(a) (2 point) Whi	(a) (2 point) Which of the following points are inner critical points for f ?						
	re $0 < t < 2$						
	(b) (4 point) Which of the following functions take the same values as f , wher $\langle x, y \rangle$ belongs to the boundary of \mathcal{R} ?						
	$(-1)^2$ where $-1 \le y \le 1$ where $0 \le y \le 2$ $(-y^2)$ where $0 \le y \le 2$						
(c) (2 point) Wha	at is the maximal value	of <i>f</i> ?					
✓ 1☐ 2	☐ 3 ☐ 4	☐ 5 ☐ none of the others					
Exercise 8 (12 p	oint)						
A surface \mathcal{F} in the space is determined by the equation $F(x,y,z) = 0$, where							
$F(x, y, z) = 2y\sin(x) + y^2 - z^2.$							
(a) (3 point) Wh vector ∇F ?	a) (3 point) Which of the following expressions correspond to the gradient vector ∇F ?						
	(x) , $2\sin(x) + 2y$, $-2z$ $+ 2\sin(x)$, $2y$, $-2z$ $+ 2\sin(x)$, 0 , $-2z$						
-	ich of the following equals $P = (0, 1, 1)$?	ations determine the tangent plane to					

		_				
(c)	_ ,	_ ,	t is the partial derivative			
	1	□ -2	<u> </u>			
	□ 0	1	none of the others			
Exe	rcise 9 (12 point)					
A fui	nction is given by	$f(x,y) = \sin(xy),$				
wher	$e x \ge 0 \text{ and } y \ge 0.$					
(a)) (2 point) Mark whether the following statement is true or false: $f(x,y)$ cannot be less than zero.					
	☐ True	∨ False				
(b)	(2 point) Mark whether the following statement is true or false: $f(x,y)$ can never be equal to $1/2$.					
	☐ True	∨ False				
(c)	(4 point) What is the directional derivative $D_{\bf u} f(P)$ at the point $P=(0,1)$ in the direction given by the unit vector ${\bf u}=\langle 0,1\rangle$?					
	☑ 0	□ 3	□ 4			
	<u> </u>	<u> </u>	none of the others			
(d)	d) (4 point) Which of the following vectors has the same direction as the on in which f grows fastest at point P (the direction \mathbf{v} for which $D_{\mathbf{v}}f(P)$ i maximal)?					
	$\left[\left(-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \right]$	$\left[\left\langle \frac{2\sqrt{5}}{5}, -\frac{1}{\sqrt{5}} \right\rangle \right]$	$\left[\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \right]$			
	√ (1,0)		$\left[\left[\left\langle -\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right\rangle \right] \right]$			
			none of the others			
Exe	rcise 10 (9 point)					
A fui	nction is given by	$f(x) = \sin(x^2)$				
for all real numbers x .						
(a)	(a) (5 point) Mark the correct expression for $f''(x)$ (which means f twice dif-					

ferentiated)

 \bigcap $-4\sin(x^2)$

(b) (4 point) Which of the following expressions corresponds to the second order Taylor polynomial for f with the expansion point a = 0?

 $\bigcap 2x + x^2$

none of the others

Exercise 11 (11 point)

A curve in the plane is given by

$$x(t)=2t+1,$$

$$y(t) = \sin(t)$$

for all real numbers *t*.

(a) (2 point) For which value of the parameter t does the curve go through the point P = (1, 0)?

(b) (4 point) What is the value of the velocity when t = 0?

 \Box 0

 $\prod \sqrt{2}$

 $\sqrt{5}$

 $\prod 1$

 \square none of the others

(c) (5 point) What is the value of the curvature at *P*?

 $\begin{array}{ccc} \boxed{1\sqrt{27}} & \boxed{2/\sqrt{125}} \\ \boxed{1/\sqrt{125}} & \boxed{none of the others} \end{array}$

Exercise 12 (5 point)

Consider the following initial value problem

$$y'(x) = x y^2(x), y(0) = 1.$$

(a) (3 point) Assume that y solves the above equation, and define

$$f(x) = \frac{1}{y(x)}.$$

Which equation does *f* satisfy?

$$\int f'(x) = x^2, \quad f(0) = 0$$

- (b) (2 point) What is y(x)?