Exam in Calculus

First Year at the Technical Faculty for IT og Design, the Faculty of Medicine and the Faculty of Engineering and Science

January 14, 2020

Problem 1 (6 points)

A real valued function is given by

$$f(x,y) = \frac{x}{\sqrt{y - x^2}}$$

with real variables *x* and *y*.

(a) (3 points) The domain of *f* consists of all points (x, y) that satisfy

$\Box y = x^2$	$\Box y \leq x^2$
$\Box y > x^2$	$\Box x, y \neq 0$
$\Box y \ge x^2$	none of the others

(b) (3 points) What is the level set f(x, y) = 0?

- The *x*-axis
- The *y*-axis
- The parabola $y = 2x^2$
- The positive part of the *y*-axis given by y > 0, x = 0
- none of the others

Problem 2 (6 points)

A parametric curve in space is given by

$$\mathbf{r}(t) = \left\langle t, \frac{1}{3}t^3, \frac{\sqrt{2}}{2}t^2 \right\rangle,$$

where the parameter t can be any real number.

(a) (2 points) What is the velocity vector of the curve?

(b) (2 points) Which of the following vectors is the acceleration vector at t = -1?

(c) (1 points) What is the speed of the curve?

$t^2 + 1$	$\Box \sqrt{1+t^2+\sqrt{2}t}$	$\Box t+1$
$\int \sqrt{1+t^2}$	$\Box \sqrt{t+1}$	none of the others

(d) (1 points) What is the length of the curve from t = 0 to t = 3?

1	7	12
10	$\Box \frac{5}{2}$	none of the others

Problem 3 (6 points)

Three complex numbers are given by

 $z_1 = 2 - 4i$, $z_2 = -3 + i$ og $z_3 = \pi + 7i$.

 $\Box -e^{-7}$

- (a) (2 points) What is the real part of e^{iz_3} ?
 - $\Box -7$ $\prod \pi$

0 $\Box e^7$ none of the others

(b) (2 points) What is the imaginary part of e^{iz_3} ?

 $\Box e^7$ $\Box e^{-\pi}$ $\Box 0$ \square none of the others 7 $\Box -\pi$

(c) (2 points) What is $z_1 - z_2$ in polar form?

 \Box 25 $e^{i7\pi/4}$ \Box 25 $e^{-i\pi/4}$ $\Box 2\sqrt{5}e^{-i\pi/4}$ $\int 5\sqrt{2}e^{-i\pi/4}$ $\Box 5e^{i\pi/4}$ \square none of the others

Problem 4 (10 point)

(a) (5 points) A homogeneous second order differential equation is given by

$$y'' - 3y' - 10y = 0$$

Below there are given several functions where c_1 and c_2 are arbitrary real constants. Mark the expression which corresponds to the general solution of the differential equation.

(b) (3 points) Mark the solution $x_p(t)$ to the inhomogeneous differential equation

$$x''(t) - 3x'(t) - 10x(t) = 20t.$$

among the following expressions:

- $\begin{array}{c} \square \ x_p(t) = 20t \\ \square \ x_p(t) = -\frac{1}{2} + 2t \\ \square \ x_p(t) = -3 2t \end{array} \qquad \begin{array}{c} \square \ x_p(t) = 2t \\ \square \ x_p(t) = \frac{3}{5} 2t \\ \square \ \text{none of the others} \end{array}$
- (c) (2 points) Mark the solution x(t) to the initial value problem

$$x''(t) - 3x'(t) - 10x(t) = 20t$$
, $x(0) = \frac{8}{5}$, $x'(0) = 10$,

among the following expressions:

 $\begin{array}{c|c} x(t) = -e^{5t} - 3e^{-2t} + \frac{3}{5} - 2t & \qquad & \square \ x(t) = \frac{1}{5}e^{5t} - 2te^{-2t} - \frac{1}{2} + 2t \\ \hline x(t) = e^{5t} + 2e^{-2t} - \frac{1}{2} + 2t & \qquad & \square \ x(t) = (\frac{3}{5}e^{5t} - 1)e^{-2t} + 2t \\ \hline x(t) = 2e^{5t} - e^{-2t} + \frac{3}{5} - 2t & \qquad & \square \ \text{none of the others} \end{array}$

Problem 5 (8 points)

Mark if the following statements are true or false:

(a) (2 points) The function f(x, y) = cos²(e^{x+y}) satisfies f_{xy} = f_{yx}.
□ True □ False

(d) (2 points) y = x + 2y is a separable unterential equation

True False

Problem 6 (7 points)

Let \mathcal{R} be the region in the plane consisting of all points within and on the triangle with corners at the points (-1,0), (-1,1), (1,0) and let f be a function defined on \mathcal{R} given by f(x,y) = xy.

(a) (2 points) Which of the following pairs of inequalities determine that a point with coordinates (x, y) belongs to \mathcal{R} ?

$$\Box \ 0 \le x \le 1, -1 \le y \le 1$$

$$\Box$$
 $-1 \le x \le 1, 0 \le y \le 1$

$$\Box -1 \le x \le 1, 0 \le y \le -\frac{1}{2}x + \frac{1}{2}$$

$$\Box 0 \le y \le 1, -1 \le x \le 2y + 1$$

none of the others

(b) (3 point) What is the correct formula that determines $\iint_{\mathcal{R}} f(x, y) dA$?

$$\Box \int_{0}^{1} \int_{-1}^{1} xy \, dx \, dy \qquad \Box \int_{-1}^{1} \int_{0}^{-\frac{1}{2}x + \frac{1}{2}} xy \, dx \, dy$$
$$\Box \int_{-1}^{2y+1} \int_{0}^{1} xy \, dy \, dx \qquad \Box \int_{-1}^{1} x \int_{0}^{-\frac{1}{2}(x-1)} y \, dy \, dx$$
$$\Box \int_{0}^{1} \int_{-1}^{2y+1} xy \, dx \, dy \qquad \Box \text{ none of the others}$$

(c) (2 points) Mark the correct value of the double integral $\iint_{\mathcal{R}} f(x, y) dA$:

\Box $-\frac{1}{6}$	0
$\Box \frac{1}{3}$	$\Box \frac{7}{6}$
□ -1	none of the others

Problem 7 (8 points)

A region \mathcal{R} in the plane consists of all points with coordinates (x, y) that satisfy the inequalities: $x^2 + y^2 \le 2$ and $y \ge 0$. A function f is defined on \mathcal{R} and given by $f(x, y) = e^{-(x^2+y^2)}$.

- (a) (3 points) Which of the following expressions describes \mathcal{R} ?
 - A disk with radius 1 and center at the origin
 - A disk with radius 2 and center at the origin
 - A disk with radius $\sqrt{2}$ and center at the origin
 - An upper half disk with radius 2 and center at the origin
 - An upper half disk with radius $\sqrt{2}$ and center at the origin
 - \Box none of the others
- (b) (4 points) Mark the correct expression:

\Box $\langle 0,1 \rangle$ is an inner critical point	$\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$ is an inner critical point
$\left[\begin{array}{c} \langle \frac{1}{2}, \frac{1}{2} \rangle \right]$ is an inner critical point	☐ there are no inner critical points
\Box $\langle 0, 0 \rangle$ is an inner critical point	none of the others

(c) (1 points) What is the minimal value of f on \mathcal{R} ?

 \Box 1 \Box 2 \Box e^{-2} \Box 0 \Box e^{-1} \Box none of the others

Problem 8 (12 points)

A surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0, where

$$F(x, y, z) = \sin(\pi x y z^{3/2})$$

- (a) (4 points) Which of the following expressions gives the gradient vector $\nabla F(P)$ at the point P = (-1, -1, 1)?
 - $\Box \langle -\pi, -\pi, \pi \rangle$ $\Box \langle 1, 1, -1 \rangle$ $\Box \langle \pi, \pi, -\frac{3}{2}\pi \rangle$ $\Box \langle 0, 0, 0 \rangle$ $\Box \langle 1, 1, \frac{3}{2} \rangle$ \Box none of the others

- (b) (4 points) Which of the following equations correspond to the tangent plane to \mathcal{F} at the point P = (-1, -1, 1)

(c) (4 points) What is the partial derivative $\partial z / \partial x$ at the point P = (-1, -1, 1)?

□ −1	$\Box -\frac{2}{3}$	$\square \frac{2}{3}$
0	$\Box -\frac{1}{3}$	none of the others

Problem 9 (12 points)

A function f is given by

$$f(x,y) = \sqrt{x^2 + y^2},$$

with real variables *x* and *y*. Let \mathcal{R} be the region in the plane consisting of all points (*x*, *y*) which satisfy $x^2 + y^2 \leq 1$.

- (a) (2 points) Mark whether the following statement is true or false: $\nabla f(0,0) = \langle 0,0 \rangle$.
 - True False
- (b) (2 points) Mark whether the following statement is true or false: $\iint_{\mathcal{R}} f(x, y) dA \ge 2.$
 - True False
- (c) (4 points) What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point $P = (\sqrt{2}, \sqrt{2})$ and direction given by the unit vector $\mathbf{u} = \langle \sqrt{2}/2, \sqrt{2}/2 \rangle$?
 - $\begin{array}{c|c} 0 & & & & & \\ 0 & & & & \\ 1 & & & \\ \end{array} \begin{array}{c} 2 & & & \\ 0 & & \\ \end{array} \begin{array}{c} 1 & & \\ 0 & & \\ \end{array} \begin{array}{c} 0 & & \\ 0 & & \\ \end{array} \begin{array}{c} 0 & & \\ 0 & & \\ \end{array} \begin{array}{c} 0 & & \\ 0 & & \\ \end{array} \begin{array}{c} 0 & & \\ 0 & & \\ \end{array}$
- (d) (4 points) Which of the following functions agrees with the partial derivative f_{xy} ?
 - $\Box \frac{2xy}{\sqrt{x^2 + y^2}} \qquad \Box \frac{2x + 2y}{\sqrt{x^2 + y^2}} \qquad \Box \frac{2xy}{(x^2 + y^2)^{3/2}}$ $\Box \frac{-xy}{\sqrt{x^2 + y^2}^3} \qquad \Box \frac{2x + 2y}{(x^2 + y^2)^{3/2}} \qquad \Box \frac{-4xy}{(x^2 + y^2)^{3/2}}$ $\Box \text{ none of the others}$

Problem 10 (9 points)

A function is given by

$$f(x) = \frac{2\ln(x)}{x}$$

for all real numbers x > 0.

- (a) (5 points) Mark the expression which agrees with f''(x) (i.e. f twice differentiated)
 - $\Box \quad \frac{6+4\ln(x)}{x^3} \qquad \Box \quad \frac{-2}{x^2}$ $\Box \quad -\frac{1}{x^2} \qquad \Box \quad \frac{4\ln(x)-6}{x^3}$ $\Box \quad \frac{2-2\ln(x)}{x} \qquad \Box \quad \text{none of the others}$
- (b) (4 points) Which of the following expressions represents the second order Taylor polynomial for f with the expansion point a = 1?

Problem 11 (11 points)

A curve in the plane is given by

$$\begin{aligned} x(t) &= \cos(t), \\ y(t) &= \sin(2t) \end{aligned}$$

for all real numbers $t \ge 0$.

- (a) (2 points) What is the minimal value of the parameter *t* for which the curve passes through the point (-1, 0)?
- (b) (4 points) What is the curvature when $t = \frac{\pi}{2}$?
 - \Box 0 \Box $\frac{1}{\sqrt{2}}$ \Box $\frac{3}{8}$ \Box $\frac{1}{2}$ \Box 1 \Box none of the others

- (c) (5 points) What is the curvature at (-1, 0)?
 - \Box 1 \Box $\frac{1}{4}$ \Box $\frac{\sqrt{2}}{2}$ \Box 0 \Box $\frac{1}{2}$ \Box none of the others

Problem 12 (5 points)

Consider the following first order differential equation

$$y'(x) + \frac{1}{x}y(x) = -x^2,$$

for all x > 0.

(a) (3 points) What is the general solution of the differential equation?

$\Box -\frac{1}{4}x^3 + c\frac{1}{x}$	$\Box -x^2 - cx$
$\Box \frac{1}{4}x^5 - cx$	$\Box c\frac{1}{x}$
$\Box -x^2 + c\frac{1}{x}$	none of the others

(b) (2 points) What is the solution to the initial value problem

$$y'(x) + \frac{1}{x}y(x) = -x^2, \quad y(1) = \frac{1}{2},$$

for all x > 0.

$$\Box -\frac{1}{4}x^{3} \qquad \Box \frac{1}{4}x^{5} - \frac{1}{4}x \qquad \Box \frac{1}{2x}$$
$$\Box -\frac{1}{4}x^{3} + \frac{3}{4x} \qquad \Box -x^{2} - \frac{3}{2x} \qquad \Box \text{ none of the others}$$