Exam in Calculus

First Year at the Technical Faculty for IT og Design,
 the Faculty of Medicine and
 the Faculty of Engineering and Science

January 14, 2020

Problem 1 (6 points)

A real valued function is given by

$$
f(x, y)=\frac{x}{\sqrt{y-x^{2}}}
$$

with real variables x and y.
(a) (3 points) The domain of f consists of all points (x, y) that satisfy
$\square y=x^{2}$$y \leq x^{2}$
$\square y>x^{2}$ $\square x, y \neq 0$
$\square y \geq x^{2}$none of the others
(b) (3 points) What is the level set $f(x, y)=0$?
\square The x-axis
\square The y-axis
\square The parabola $y=2 x^{2}$
\square The positive part of the y-axis given by $y>0, x=0$none of the others

Problem 2 (6 points)

A parametric curve in space is given by

$$
\mathbf{r}(t)=\left\langle t, \frac{1}{3} t^{3}, \frac{\sqrt{2}}{2} t^{2}\right\rangle
$$

where the parameter t can be any real number.
(a) (2 points) What is the velocity vector of the curve?
$\square\left\langle 1,2 t^{2}, \sqrt{2} t\right\rangle$
$\square\left\langle t^{2}, 1, \sqrt{2} t\right\rangle$
$\square\left\langle 1, t^{4}, 2 t^{2}\right\rangle$
$\square\left\langle 1, t^{2}, \sqrt{2} t\right\rangle$
$\square\left\langle t^{2}, \frac{1}{9} t^{6}, \frac{1}{2} t^{4}\right\rangle$
none of the others
(b) (2 points) Which of the following vectors is the acceleration vector at $t=-1$?
$\square\langle 0,-1, \sqrt{2}\rangle$
$\square\langle 1,-2, \sqrt{2}\rangle$
$\square\left\langle 0,-2, \frac{\sqrt{2}}{2}\right\rangle$
$\square\langle 0,1, \sqrt{2}\rangle$
$\square\langle 0,-2, \sqrt{2}\rangle$
\square none of the others
(c) (1 points) What is the speed of the curve?
$\square t^{2}+1$
$\square \sqrt{1+t^{2}+\sqrt{2} t}$
$\square t+1$
$\square \sqrt{1+t^{2}}$
$\square \sqrt{t+1}$
none of the others
(d) (1 points) What is the length of the curve from $t=0$ to $t=3$?
$\square 1$
$\square 7$
$\square 12$
$\square 10$none of the others

Problem 3 (6 points)

Three complex numbers are given by

$$
z_{1}=2-4 i, \quad z_{2}=-3+i \quad \text { og } \quad z_{3}=\pi+7 i
$$

(a) (2 points) What is the real part of $e^{i z_{3}}$?
$\square-7$
$\square \pi$
0
$\square-e^{-7}$
$\square e^{7}$
\square none of the others
(b) (2 points) What is the imaginary part of $e^{i z_{3}}$?
$\square 0$
$\square 7$$\square e^{-\pi}$
$\square-\pi$none of the others
(c) (2 points) What is $z_{1}-z_{2}$ in polar form?$25 e^{-i \pi / 4}$
$\square 2 \sqrt{5} e^{-i \pi / 4}$
$\square 25 e^{i 7 \pi / 4}$
$\square 5 e^{i \pi / 4}$
$\square 5 \sqrt{2} e^{-i \pi / 4}$
\square none of the others

Problem 4 (10 point)

(a) (5 points) A homogeneous second order differential equation is given by

$$
y^{\prime \prime}-3 y^{\prime}-10 y=0
$$

Below there are given several functions where c_{1} and c_{2} are arbitrary real constants. Mark the expression which corresponds to the general solution of the differential equation.
$\square y(t)=c_{1} e^{-2 t}+c_{2} t e^{5 t}$
$\square y(t)=c_{1} e^{5 t}+c_{2} t$
$\square y(t)=e^{2 t}\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\right)$
$\square y(t)=e^{5 t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right)$
$\square y(t)=\left(c_{1} e^{5 t}+c_{2}\right) e^{-2 t}$
$\square y(t)=\left(c_{1}+c_{2}\right) e^{5 t}$
$\square y(t)=c_{1} e^{5 t}+c_{2} e^{-2 t}$ \square none of the others
(b) (3 points) Mark the solution $x_{p}(t)$ to the inhomogeneous differential equation

$$
x^{\prime \prime}(t)-3 x^{\prime}(t)-10 x(t)=20 t
$$

among the following expressions:
$\square x_{p}(t)=20 t$
$\square x_{p}(t)=2 t$
$\square x_{p}(t)=-\frac{1}{2}+2 t$
$\square x_{p}(t)=\frac{3}{5}-2 t$
$\square x_{p}(t)=-3-2 t$
\square none of the others
(c) (2 points) Mark the solution $x(t)$ to the initial value problem

$$
x^{\prime \prime}(t)-3 x^{\prime}(t)-10 x(t)=20 t, \quad x(0)=\frac{8}{5}, \quad x^{\prime}(0)=10
$$ among the following expressions:

$\square x(t)=-e^{5 t}-3 e^{-2 t}+\frac{3}{5}-2 t$
$\square x(t)=\frac{1}{5} e^{5 t}-2 t e^{-2 t}-\frac{1}{2}+2 t$
$\square x(t)=e^{5 t}+2 e^{-2 t}-\frac{1}{2}+2 t$
$\square x(t)=\left(\frac{3}{5} e^{5 t}-1\right) e^{-2 t}+2 t$
$\square x(t)=2 e^{5 t}-e^{-2 t}+\frac{3}{5}-2 t$
\square none of the others

Problem 5 (8 points)

Mark if the following statements are true or false:
(a) (2 points) The function $f(x, y)=\cos ^{2}\left(e^{x+y}\right)$ satisfies $f_{x y}=f_{y x}$.
(b) (2 points) $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{2}\right)\right)=\frac{5 \pi}{2}$.
\square True
False
(c) $(2$ points $) \cos (x)=\frac{e^{i x}+e^{-i x}}{2}$.
\square True
\square False
(d) (2 points) $y^{\prime}=x+2 y$ is a separable differential equation.TrueFalse

Problem 6 (7 points)

Let \mathcal{R} be the region in the plane consisting of all points within and on the triangle with corners at the points $(-1,0),(-1,1),(1,0)$ and let f be a function defined on \mathcal{R} given by $f(x, y)=x y$.
(a) (2 points) Which of the following pairs of inequalities determine that a point with coordinates (x, y) belongs to \mathcal{R} ?
$\square 0 \leq x \leq 1,-1 \leq y \leq 1$
$\square-1 \leq x \leq 1,0 \leq y \leq 1$
$\square-1 \leq x \leq 1,0 \leq y \leq-\frac{1}{2} x+\frac{1}{2}$
$\square 0 \leq y \leq 1,-1 \leq x \leq 2 y+1$none of the others
(b) (3 point) What is the correct formula that determines $\iint_{\mathcal{R}} f(x, y) d A$?
$\square \int_{0}^{1} \int_{-1}^{1} x y d x d y$
$\square \int_{-1}^{1} \int_{0}^{-\frac{1}{2} x+\frac{1}{2}} x y d x d y$
$\square \int_{-1}^{2 y+1} \int_{0}^{1} x y d y d x$
$\square \int_{-1}^{1} x \int_{0}^{-\frac{1}{2}(x-1)} y d y d x$
$\square \int_{0}^{1} \int_{-1}^{2 y+1} x y d x d y$
\square none of the others
(c) (2 points) Mark the correct value of the double integral $\iint_{\mathcal{R}} f(x, y) d A$:
$\square-\frac{1}{6}$
$\square 0$
$\square \frac{1}{3}$
$\square-1$none of the others

Problem 7 (8 points)

A region \mathcal{R} in the plane consists of all points with coordinates (x, y) that satisfy the inequalities: $x^{2}+y^{2} \leq 2$ and $y \geq 0$. A function f is defined on \mathcal{R} and given by $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$.
(a) (3 points) Which of the following expressions describes \mathcal{R} ?
\square A disk with radius 1 and center at the origin
\square A disk with radius 2 and center at the origin
\square A disk with radius $\sqrt{2}$ and center at the origin
\square An upper half disk with radius 2 and center at the origin
\square An upper half disk with radius $\sqrt{2}$ and center at the origin
\square none of the others
(b) (4 points) Mark the correct expression:
$\square\langle 0,1\rangle$ is an inner critical point $\quad \square\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$ is an inner critical point
$\square\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle$ is an inner critical point there are no inner critical points
$\square\langle 0,0\rangle$ is an inner critical pointnone of the others
(c) (1 points) What is the minimal value of f on \mathcal{R} ?
$\square 0$
\square none of the others

Problem 8 (12 points)

A surface \mathcal{F} in space is determined by the equation $F(x, y, z)=0$, where

$$
F(x, y, z)=\sin \left(\pi x y z^{3 / 2}\right)
$$

(a) (4 points) Which of the following expressions gives the gradient vector $\nabla F(P)$ at the point $P=(-1,-1,1)$?
$\square\langle-\pi,-\pi, \pi\rangle$
$\square\langle 1,1,-1\rangle$
$\square\left\langle\pi, \pi,-\frac{3}{2} \pi\right\rangle$
$\square\langle 0,0,0\rangle$
$\square\left\langle 1,1, \frac{3}{2}\right\rangle$none of the others
(b) (4 points) Which of the following equations correspond to the tangent plane to \mathcal{F} at the point $P=(-1,-1,1)$
$\square 3 z=2 x+2 y+7$
$\square 3 z=2 x+y$
$\square-7 z=2 x+2 y$
$\square x+y-z=\frac{5}{2}$
$2 z=3 y+2 x+7$
none of the others
(c) (4 points) What is the partial derivative $\partial z / \partial x$ at the point $P=(-1,-1,1)$?
$\square-1$
$\square-\frac{2}{3}$
$\square \frac{2}{3}$
$\square 0$
$\square-\frac{1}{3}$none of the others

Problem 9 (12 points)

A function f is given by

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

with real variables x and y. Let \mathcal{R} be the region in the plane consisting of all points (x, y) which satisfy $x^{2}+y^{2} \leq 1$.
(a) (2 points) Mark whether the following statement is true or false:
$\nabla f(0,0)=\langle 0,0\rangle$.$\square$ False
(b) (2 points) Mark whether the following statement is true or false:
$\iint_{\mathcal{R}} f(x, y) d A \geq 2$.
\square True
\square False
(c) (4 points) What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(\sqrt{2}, \sqrt{2})$ and direction given by the unit vector $\mathbf{u}=\langle\sqrt{2} / 2, \sqrt{2} / 2\rangle$?
0
$\square 3$
$\square 1$
2none of the others
(d) (4 points) Which of the following functions agrees with the partial derivative $f_{x y}$?
$\square \frac{2 x y}{\sqrt{x^{2}+y^{2}}}$
$\square \frac{2 x+2 y}{\sqrt{x^{2}+y^{2}}}$
$\square \frac{2 x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$
$\square \frac{-x y}{\sqrt{x^{2}+y^{2}}}$
$\square \frac{2 x+2 y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$
$\square \frac{-4 x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$none of the others

Problem 10 (9 points)

A function is given by

$$
f(x)=\frac{2 \ln (x)}{x}
$$

for all real numbers $x>0$.
(a) (5 points) Mark the expression which agrees with $f^{\prime \prime}(x)$ (i.e. f twice differentiated)
$\square \frac{6+4 \ln (x)}{x^{3}}$
$\square \frac{-2}{x^{2}}$
$\square-\frac{1}{x^{2}}$
$\square \frac{4 \ln (x)-6}{x^{3}}$
$\square \frac{2-2 \ln (x)}{x}$
\square none of the others
(b) (4 points) Which of the following expressions represents the second order Taylor polynomial for f with the expansion point $a=1$?
$\square 2(x-1)+3(x-1)^{2}$
$\square-3 x^{2}+2 x$
$\square-3 x^{2}+6 x-2$
$\square-3 x^{2}+8 x-5$
$\square-3 x^{2}+2 x+1$none of the others

Problem 11 (11 points)

A curve in the plane is given by

$$
\begin{aligned}
& x(t)=\cos (t), \\
& y(t)=\sin (2 t)
\end{aligned}
$$

for all real numbers $t \geq 0$.
(a) (2 points) What is the minimal value of the parameter t for which the curve passes through the point $(-1,0)$?
π
$\square \frac{\pi}{2}$
$\square \frac{3 \pi}{2}$ \square none of the others
(b) (4 points) What is the curvature when $t=\frac{\pi}{2}$?
$\square 0$
$\square \frac{1}{\sqrt{2}}$1
$\square \frac{3}{8}$
\square none of the others
(c) (5 points) What is the curvature at $(-1,0)$?
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{\sqrt{2}}{2}$
none of the others

Problem 12 (5 points)

Consider the following first order differential equation

$$
y^{\prime}(x)+\frac{1}{x} y(x)=-x^{2}
$$

for all $x>0$.
(a) (3 points) What is the general solution of the differential equation?
$\square-\frac{1}{4} x^{3}+c \frac{1}{x}$
$\square-x^{2}-c x$
$\square \frac{1}{4} x^{5}-c x$
$\square c^{\frac{1}{x}}$
$\square-x^{2}+c \frac{1}{x}$
\square none of the others
(b) (2 points) What is the solution to the initial value problem

$$
y^{\prime}(x)+\frac{1}{x} y(x)=-x^{2}, \quad y(1)=\frac{1}{2}
$$

for all $x>0$.
$\square-\frac{1}{4} x^{3}$
$\square \frac{1}{4} x^{5}-\frac{1}{4} x$
$\square \frac{1}{2 x}$
$\square-\frac{1}{4} x^{3}+\frac{3}{4 x}$
$\square-x^{2}-\frac{3}{2 x}$
\square none of the others

