Exam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

5 January 2018

The present exam set consists of 8 numbered pages with 12 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.

It is allowed to use books, notes etc. It **is not** allowed to use electronic devices.

Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your **full name** and **student number** below.

Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (9 points)

(a) (5 points). A second order differential equation is given by

$$y'' + 4y' + 29y = 0.$$

Below is a list of function expressions containing two arbitrary constants c_1 and c_2 . Mark the expression which constitute the general solution of the differential equation.

- $\begin{array}{l} \begin{array}{l} \begin{array}{l} y(t) = c_1 e^{3t} + c_2 e^{5t} \\ \end{array} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{2t} + c_2 e^{5t} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{-2t} + c_2 e^{3t} \\ \end{array} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{2t} + c_2 t e^{2t} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{-3t} + c_2 t e^{-3t} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{-2t} \cos(5t) + c_2 e^{-2t} \sin(5t) \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{-t} \cos(4t) + c_2 e^{-t} \sin(4t) \\ \end{array} \\ \end{array} \\ \begin{array}{l} y(t) = c_1 e^{2t} \cos(3t) + c_2 e^{2t} \sin(3t) \end{array} \end{array}$
- (b) (4 points). Now consider the inhomogeneous equation

$$y'' + 4y' + 29y = 13e^{-3t}.$$

Which one of the following functions is a particular solution of that equation?

 $\Box t^{2} + e^{-3t+1} \qquad \Box 2e^{3t} \qquad \Box \frac{1}{3}e^{3t} \qquad \Box \frac{1}{2}e^{-3t}$ $\Box 2e^{-3t} \qquad \Box \frac{1}{4}e^{-3t} \qquad \Box \frac{1}{9}e^{t} + e^{-t} \qquad \Box \frac{2}{3}e^{-3t+1}$

Problem 2 (6 points)

A surface \mathcal{F} in space is determined by the equation F(x, y, z) = 0 where

$$F(x, y, z) = x^3 - y^3 + 2z^3 - 9.$$

The surface \mathcal{F} has a tangent plane at the point P = (2, 1, 1). Mark an equation for this tangent plane among the following options:

$$\Box 3x - 3y + 12z = 15$$
 $\Box 2x - 2y + 7z = 5$
 $\Box x - 2y + z = 1$
 $\Box -3x + 2y + 6z = 11$
 $\Box 9x + y + 6z = 25$
 $\Box x - 2y - z = 1$
 $\Box 12x - 3y + 6z = 27$
 $\Box x - 3y + 5z = -3$

Problem 3 (10 points)

A plane curve is given by

$$x = t - 2t^2,$$

$$y = 2t + t^2,$$

where the parameter t runs through the real numbers.

(a) (2 points). Which point on the curve corresponds to the parameter value t = 1?

(1,4)	□ (−1,1)	□ (−1,2)	(3,4)
□ (−1,3)	(5,4)	□ (-3,4)	□ (-5,4)

(b) (4 points). What is the curvature of the curve for t = 1?

$\Box \frac{\sqrt{2}}{4}$	$\Box \frac{\sqrt{3}}{4}$	$\Box \frac{2}{25}$	5
$\square \frac{1}{2}$	$\Box \sqrt{3}$	$\square \frac{1}{9}$	$\int \sqrt{11}$

(c) (4 points). For which value of *t* is the curvature maximal?

□ −2	0	3	5
\Box $-\frac{1}{2}$	$\square \frac{3}{2}$	$\Box \frac{7}{2}$	9

Problem 4 (7 points)

A function is defined by

$$f(x) = (4x+1)^{\frac{1}{2}}.$$

(a) (3 points). What is the double derivative f''(x)?

$\Box (4x+1)^{-\frac{1}{2}}$	$\Box 2x^{-\frac{1}{2}}$	$\Box \frac{1}{4}(4x+1)^{\frac{1}{2}}$
$\Box -\frac{1}{4}(4x+1)^{-\frac{3}{2}}$	$\Box 6x^{-\frac{3}{2}}$	$\Box -4(4x+1)^{-\frac{3}{2}}$

(b) (4 points). Which one of the polynomials below is the third order Taylor polynomial for f at the point x = 0?

$1 + 2x - \frac{1}{2}x^2 + \frac{1}{6}x^3$	$1 - \frac{1}{2}x^3$	$2 + 4x^2 - \frac{1}{2}x^3$
$1 - x + x^2 - 6x^3$	$1 + 3x + x^2 + 2x^3$	$1 + 2x - 2x^2 + 4x^3$

Problem 5 (10 points)

A particle is moving along a curve in space. The position vector of the particle at time t is

$$\mathbf{r}(t) = \langle e^t, e^{-t}, \sqrt{2} t \rangle.$$

(a) (3 points). What is the velocity vector $\mathbf{v}(t)$?

$\Box \langle e^t, -e^{-t}, \frac{1}{2\sqrt{2}}t \rangle$	$\Box \langle te^{t-1}, -te^{-t-1}, 0 \rangle$
$\Box \langle e^t, e^{-t}, 1 \rangle$	$\Box \langle e^t, -e^{-t}, \sqrt{2} \rangle$
$\Box \ \langle e^t, \ -e^{-t}, \frac{\sqrt{2}}{2}t^2 \ \rangle$	$\Box \langle e^t, e^{-t}, t \rangle$

(b) (4 points). What is the speed $\nu(t)$?

$\Box e^t + e^{-t}$	$\Box \sqrt{e^{2t} + e^{-2t} + \frac{1}{8}t}$
$\Box e^t + e^{-t} + \sqrt{2}$	$\Box 2e^{2t} + 2t$
$\Box \sqrt{e^{2t} + e^{-2t} + t^2}$	$\Box \sqrt{e^{2t} + e^{-2t} + 2t^2}$

(c) (3 points). The particle runs through a segment of the motion curve during the time interval $0 \le t \le 1$. What is the arc length of that segment?

$\Box e^2$	$\Box e - e^{-1}$
$\Box 2e+1$	$\Box e - e^{-1} + \sqrt{2}$
$\Box \sqrt{2}$	$\exists \ln(2)$

Page 4 of 8

Problem 6 (6 points)

Two complex numbers are given by

$$z_1 = rac{1+i}{3-2i}$$
 , $z_2 = rac{2i}{1+i}$

(a) (3 points). What is z_1 written in standard form?

$\Box 2+3i$	$\Box \frac{1}{13} + \frac{5}{13}i$	□ 8 <i>i</i>	$\boxed{\frac{1}{4} - \frac{3}{4}i}$
$\boxed{\frac{1}{5}-\frac{2}{5}i}$	$\Box \frac{2}{5} + \frac{3}{5}i$	□ -5	$\Box -2-i$

(b) (3 points). What is z_2 written in polar form?

$\Box 2e^{i\pi/3}$	$\Box 2e^{i\pi}$	$\Box 2e^{i\pi/2}$	$\Box \sqrt{6}e^{i\pi/4}$
$\Box \sqrt{2}e^{i\pi/4}$	$\Box \sqrt{2}e^{-i\pi/3}$	$\Box \frac{1}{2}e^{-i\pi}$	$\Box 5e^{3i\pi/4}$

Problem 7 (8 points)

A function is defined as

$$f(x,y) = \frac{4x - 2y^2 - 3}{x^2 - y^2}.$$

Mark the correct option in each question below.

(a) (4 points). The domain of f consists of all those points (x, y) which satisfy

$\Box x > 0 \text{ and } y > 0$	$y \neq x$ and $y \neq -x$
$\Box x > y$	$x \neq 0$ and $y \neq 0$
$\Box 4x + 5 \ge 0$	$x \neq 0 \text{ or } y \neq 0$

(b) (4 points). The level curve with equation f(x, y) = 1 can be described as:

- A parabola with equation $y = 2x^2 + \frac{5}{2}$.
- A parabola with equation $y = x^2 2x + 4$.
- \Box A straight line through (0, 5) with slope 4.
- \Box A straight line through (0, 2) with slope 2.
- A circle with center at (-2, 1) and radius $\frac{1}{2}$.
- \Box A circle with center at (2, 0) and radius 1.

Problem 8 (14 points)

A function is defined as

$$f(x,y) = xy^2 - 6x^2 - 3y^2.$$

(a) (2 points). What is the function value f(1, 1)?

□ -10	0	3	7
□ -8	2	5	11

(b) (4 points). Which of the following points are critical points for *f*? (*Remark*: Each wrong mark in this question will cancel a true mark.)

(0,0)	$\Box (-1,1)$	(2,3)	(4,2)
(1,1)	(3,6)	□ (3, -6)	□ (4, −16)

(c) (4 points). What is the directional derivative $D_{\mathbf{u}}f(P)$ at the point P = (-1, 1) and in the direction of the unit vector $\mathbf{u} = \frac{\sqrt{2}}{2}(\mathbf{i} + \mathbf{j}) = \frac{\sqrt{2}}{2}\langle 1, 1 \rangle$? $\boxed{2\sqrt{2}}$ $\boxed{\frac{\sqrt{2}}{4}}$ $\boxed{8}$ $\boxed{\frac{\sqrt{6}}{2}}$ $\boxed{\frac{5\sqrt{2}}{2}}$ $\boxed{10\sqrt{2}}$ $\boxed{-7}$ $\boxed{\frac{1}{3}}$

(d) (4 points). Which one of the following equations is an equation for the tangent plane to the graph of *f* at the point Q = (1, 1, f(1, 1))?

$\Box x + 2y - z = 11$	$\Box 11x + 4y + z = 7$
$\Box 2x - 3y + z = -9$	$\Box x + y - z = 1$
9x + 10y - z = 13	$\Box 10x + y + z = 3$

Problem 9 (5 points)

Let

$$g(x, y, z) = \arctan(x^2 + y^2 - z^2).$$

In which direction is the directional derivative of *g* at P = (1, -1, 1) maximal? Mark a unit vector below which specifies the direction.

$\boxed{\frac{\sqrt{3}}{3}}\langle 1, -1, -1 \rangle$	$\boxed{\frac{1}{3}\langle 2,2,1\rangle}$
$\boxed{\frac{\sqrt{2}}{2}}\langle 1,1,0\rangle$	$\boxed{\frac{1}{3}}\langle -2,1,2\rangle$
$\boxed{\frac{\sqrt{2}}{2}}\langle -1,0,1\rangle$	$\boxed{\frac{1}{5}\langle 3, -4, 0 \rangle}$

Problem 10 (10 points)

A plane region \mathcal{R} consists of those points (*x*, *y*) which satisfy the inequalities

$$0 \le x$$
, $0 \le y$, $x^2 + y^2 \le 16$.

Mark the value of the double integral

$$\iint_{\mathcal{R}} x \sqrt{x^2 + y^2} \, dA.$$

 $\begin{bmatrix} \frac{5}{4} \\ 0 \frac{55}{4} \end{bmatrix} \begin{bmatrix} \frac{55}{4} \\ 0 \frac{47}{2} \end{bmatrix} \begin{bmatrix} 8 \\ 0 \frac{55}{2} \end{bmatrix} \begin{bmatrix} \frac{47}{2} \\ 0 \frac{55}{2} \end{bmatrix} \begin{bmatrix} 64 \\ 0 \frac{91}{2} \end{bmatrix} \begin{bmatrix} 91 \\ 0 \frac{121}{2} \end{bmatrix}$

Problem 11 (10 points)

A space region \mathcal{T} consists of those points (*x*, *y*, *z*) which satisfy the inequalities

 $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 5 - xy$.

A solid body with density function $\delta(x, y, z) = x$ covers \mathcal{T} precisely.

(a) (5 points). What is the volume of \mathcal{T} ?

$\boxed{\frac{1}{3}}$	$\square \frac{3}{2}$	$\square \frac{22}{3}$	3	9
$\square \frac{1}{2}$	$\Box \frac{7}{2}$	2	5	11

(b) (5 points). What is the mass of the solid body covering \mathcal{T} ?

$\Box \frac{13}{3}$	$\boxed{\frac{15}{2}}$	3	5	[] 10π
$\square \frac{11}{2}$	2	4	8	$\frac{4\pi}{7}$

Problem 12 (5 points)

The figure below shows the graph of the function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi$$

in polar coordinates

Which one of the following rules for f corresponds to the figure?

$$\Box f(\theta) = 1 + \sin \theta \qquad \Box f(\theta) = \sin(2\theta)$$
$$\Box f(\theta) = 1 + \theta \qquad \Box f(\theta) = 1 + \cos \theta$$
$$\Box f(\theta) = 1 - 2\sin \theta \qquad \Box f(\theta) = 1 + \theta^2$$