Exam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

5 January 2018

The present exam set consists of 8 numbered pages with 12 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your full name and student number below.

Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (9 points)

(a) (5 points). A second order differential equation is given by

$$
y^{\prime \prime}+4 y^{\prime}+29 y=0
$$

Below is a list of function expressions containing two arbitrary constants c_{1} and c_{2}. Mark the expression which constitute the general solution of the differential equation.
$\square y(t)=c_{1} e^{3 t}+c_{2} e^{5 t}$
$\square y(t)=c_{1} e^{2 t}+c_{2} e^{5 t}$
$\square y(t)=c_{1} e^{-2 t}+c_{2} e^{3 t}$
$\square y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$
$\square y(t)=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$
$\square y(t)=c_{1} e^{-2 t} \cos (5 t)+c_{2} e^{-2 t} \sin (5 t)$
$\square y(t)=c_{1} e^{-t} \cos (4 t)+c_{2} e^{-t} \sin (4 t)$
$\square y(t)=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)$
(b) (4 points). Now consider the inhomogeneous equation

$$
y^{\prime \prime}+4 y^{\prime}+29 y=13 e^{-3 t} .
$$

Which one of the following functions is a particular solution of that equation?
$\square t^{2}+e^{-3 t+1}$
$\square 2 e^{3 t}$
$\square \frac{1}{3} e^{3 t}$
$\square \frac{1}{2} e^{-3 t}$
$\square 2 e^{-3 t}$
$\square \frac{1}{4} e^{-3 t}$
$\square \frac{1}{9} e^{t}+e^{-t}$
$\square \frac{2}{3} e^{-3 t+1}$

Problem 2 (6 points)

A surface \mathcal{F} in space is determined by the equation $F(x, y, z)=0$ where

$$
F(x, y, z)=x^{3}-y^{3}+2 z^{3}-9 .
$$

The surface \mathcal{F} has a tangent plane at the point $P=(2,1,1)$. Mark an equation for this tangent plane among the following options:
$\square 3 x-3 y+12 z=15$
$\square x-2 y+z=1$
$\square 9 x+y+6 z=25$
$\square 12 x-3 y+6 z=27$
$\square 2 x-2 y+7 z=5$
$\square-3 x+2 y+6 z=11$
$\square x-2 y-z=1$
$\square x-3 y+5 z=-3$

Problem 3 (10 points)

A plane curve is given by

$$
\begin{aligned}
& x=t-2 t^{2} \\
& y=2 t+t^{2}
\end{aligned}
$$

where the parameter t runs through the real numbers.
(a) (2 points). Which point on the curve corresponds to the parameter value $t=1$?
$\square(1,4)$
$\square(-1,1)$
$\square(-1,2)$
$\square(3,4)$
$\square(-1,3)$
$\square(5,4)$
$\square(-3,4)$
$\square(-5,4)$
(b) (4 points). What is the curvature of the curve for $t=1$?
$\square \frac{\sqrt{2}}{4}$
$\square \frac{\sqrt{3}}{4}$
$\square \frac{2}{25}$
$\square 5$
$\square \frac{1}{2}$
$\square \sqrt{3}$
$\square \frac{1}{9}$
$\square \sqrt{11}$
(c) (4 points). For which value of t is the curvature maximal?
$\square-2$
$\square 0$
$\square 3$
$\square-\frac{1}{2}$5

Problem 4 (7 points)

A function is defined by

$$
f(x)=(4 x+1)^{\frac{1}{2}}
$$

(a) (3 points). What is the double derivative $f^{\prime \prime}(x)$?
$\square(4 x+1)^{-\frac{1}{2}}$
$2 x^{-\frac{1}{2}}$
$\square \frac{1}{4}(4 x+1)^{\frac{1}{2}}$
$\square-\frac{1}{4}(4 x+1)^{-\frac{3}{2}}$
$\square 6 x^{-\frac{3}{2}}$
$\square-4(4 x+1)^{-\frac{3}{2}}$
(b) (4 points). Which one of the polynomials below is the third order Taylor polynomial for f at the point $x=0$?
$\square 1+2 x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}$
$\square 1-\frac{1}{2} x^{3}$
$\square 2+4 x^{2}-\frac{1}{2} x^{3}$
$\square 1-x+x^{2}-6 x^{3}$
$\square 1+3 x+x^{2}+2 x^{3}$
$\square 1+2 x-2 x^{2}+4 x^{3}$

Problem 5 (10 points)

A particle is moving along a curve in space. The position vector of the particle at time t is

$$
\mathbf{r}(t)=\left\langle e^{t}, e^{-t}, \sqrt{2} t\right\rangle .
$$

(a) (3 points). What is the velocity vector $\mathbf{v}(t)$?
$\square\left\langle e^{t},-e^{-t}, \frac{1}{2 \sqrt{2}} t\right\rangle$
$\square\left\langle t e^{t-1},-t e^{-t-1}, 0\right\rangle$
$\square\left\langle e^{t}, e^{-t}, 1\right\rangle$
$\square\left\langle e^{t},-e^{-t}, \sqrt{2}\right\rangle$
$\square\left\langle e^{t},-e^{-t}, \frac{\sqrt{2}}{2} t^{2}\right\rangle$
$\square\left\langle e^{t}, e^{-t}, t\right\rangle$
(b) (4 points). What is the speed $v(t)$?
$\square e^{t}+e^{-t}$
$\square \sqrt{e^{2 t}+e^{-2 t}+\frac{1}{8} t}$
$\square e^{t}+e^{-t}+\sqrt{2}$
$\square \sqrt{e^{2 t}+e^{-2 t}+t^{2}}$
$\square 2 e^{2 t}+2 t$
$\square \sqrt{e^{2 t}+e^{-2 t}+2 t^{2}}$
(c) (3 points). The particle runs through a segment of the motion curve during the time interval $0 \leq t \leq 1$. What is the arc length of that segment?
$\square e^{2}$
$\square e-e^{-1}$
$\square 2 e+1$
$\square e-e^{-1}+\sqrt{2}$
$\square \sqrt{2}$

Problem 6 (6 points)

Two complex numbers are given by

$$
z_{1}=\frac{1+i}{3-2 i} \quad, \quad z_{2}=\frac{2 i}{1+i}
$$

(a) (3 points). What is z_{1} written in standard form?
$\square 2+3 i$
$\square \frac{1}{13}+\frac{5}{13} i$$\square \frac{1}{4}-\frac{3}{4} i$
$\square \frac{1}{5}-\frac{2}{5} i$
$\square \frac{2}{5}+\frac{3}{5} i$
$\square-5$
$\square-2-i$
(b) (3 points). What is z_{2} written in polar form?
$\square 2 e^{i \pi / 3}$
$\square 2 e^{i \pi}$
$\square 2 e^{i \pi / 2}$
$\square \sqrt{6} e^{i \pi / 4}$
$\square \sqrt{2} e^{i \pi / 4}$
$\square \sqrt{2} e^{-i \pi / 3}$
$\square \frac{1}{2} e^{-i \pi}$
$\square 5 e^{3 i \pi / 4}$

Problem 7 (8 points)

A function is defined as

$$
f(x, y)=\frac{4 x-2 y^{2}-3}{x^{2}-y^{2}}
$$

Mark the correct option in each question below.
(a) (4 points). The domain of f consists of all those points (x, y) which satisfy
$\square x>0$ and $y>0$
$\square y \neq x$ and $y \neq-x$
$\square x>y$
$\square x \neq 0$ and $y \neq 0$
$\square 4 x+5 \geq 0$
$\square x \neq 0$ or $y \neq 0$
(b) (4 points). The level curve with equation $f(x, y)=1$ can be described as:A parabola with equation $y=2 x^{2}+\frac{5}{2}$.A parabola with equation $y=x^{2}-2 x+4$.A straight line through $(0,5)$ with slope 4.
\square A straight line through $(0,2)$ with slope 2 .
\square A circle with center at $(-2,1)$ and radius $\frac{1}{2}$.A circle with center at $(2,0)$ and radius 1 .

Problem 8 (14 points)

A function is defined as

$$
f(x, y)=x y^{2}-6 x^{2}-3 y^{2}
$$

(a) (2 points). What is the function value $f(1,1)$?
$\square-10$07
$\square-8$
211
(b) (4 points). Which of the following points are critical points for f ? (Remark: Each wrong mark in this question will cancel a true mark.)
$\square(0,0)$
$\square(-1,1)$
$\square(2,3)$
$\square(4,2)$
$\square(1,1)$
$\square(3,6)$
$\square(3,-6)$
(c) (4 points). What is the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(-1,1)$ and in the direction of the unit vector
$\mathbf{u}=\frac{\sqrt{2}}{2}(\mathbf{i}+\mathbf{j})=\frac{\sqrt{2}}{2}\langle 1,1\rangle$?
$\square 2 \sqrt{2}$
$\square \frac{\sqrt{2}}{4}$
$\square \frac{5 \sqrt{2}}{2}$
$\square 10 \sqrt{2}$
8
$\square-7$

(d) (4 points). Which one of the following equations is an equation for the tangent plane to the graph of f at the point $Q=(1,1, f(1,1))$?
$\square x+2 y-z=11$
$\square 11 x+4 y+z=7$
$\square 2 x-3 y+z=-9$
$\square x+y-z=1$
$\square 9 x+10 y-z=13$
$\square 10 x+y+z=3$

Problem 9 (5 points)

Let

$$
g(x, y, z)=\arctan \left(x^{2}+y^{2}-z^{2}\right) .
$$

In which direction is the directional derivative of g at $P=(1,-1,1)$ maximal? Mark a unit vector below which specifies the direction.
$\square \frac{\sqrt{3}}{3}\langle 1,-1,-1\rangle$
$\square \frac{1}{3}\langle 2,2,1\rangle$
$\square \frac{\sqrt{2}}{2}\langle 1,1,0\rangle$
$\square \frac{1}{3}\langle-2,1,2\rangle$
$\square \frac{\sqrt{2}}{2}\langle-1,0,1\rangle$
$\square \frac{1}{5}\langle 3,-4,0\rangle$

Problem 10 (10 points)

A plane region \mathcal{R} consists of those points (x, y) which satisfy the inequalities

$$
0 \leq x, \quad 0 \leq y, \quad x^{2}+y^{2} \leq 16
$$

Mark the value of the double integral

$$
\iint_{\mathcal{R}} x \sqrt{x^{2}+y^{2}} d A
$$

$\square \frac{5}{4}$
$\square \frac{5}{2}$
$\square \frac{55}{4}$
$\square 8$
$\square 64$
$\square 91$
$\square 55$
$\square 72$
$\square 121$

Problem 11 (10 points)

A space region \mathcal{T} consists of those points (x, y, z) which satisfy the inequalities

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 2, \quad 0 \leq z \leq 5-x y
$$

A solid body with density function $\delta(x, y, z)=x$ covers \mathcal{T} precisely.
(a) (5 points). What is the volume of \mathcal{T} ?9
2511
(b) (5 points). What is the mass of the solid body covering \mathcal{T} ?
$\square \frac{13}{3}$
$\square \frac{15}{2}$
35
$\square 10 \pi$
$\square \frac{11}{2}$
4
8
$\square \frac{4 \pi}{7}$

Problem 12 (5 points)

The figure below shows the graph of the function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

in polar coordinates

Which one of the following rules for f corresponds to the figure?
$\square f(\theta)=1+\sin \theta$
$\square f(\theta)=\sin (2 \theta)$
$\square f(\theta)=1+\theta$
$\square f(\theta)=1+\cos \theta$
$\square f(\theta)=1-2 \sin \theta$
$\square f(\theta)=1+\theta^{2}$

