Exam in Calculus

First Year at The Faculty of Engineering and Science and The Faculty of Medicine

6 June 2016

The present exam set consists of 10 numbered pages with 14 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100 .
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your full name and student number below.
Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (7 points)

Consider the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+26 y=0 .
$$

A number of function expressions, which contain two arbitrary constants c_{1} and c_{2}, are listed below. Mark the expression which constitute the complete solution of the differential equation.
$\square y(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}$
$\square y(t)=c_{1} e^{3 t} \cos (t)+c_{2} e^{3 t} \sin (t)$
$\square y(t)=c_{1} e^{t}+c_{2} e^{3 t}$
$\square y(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}$
$\square y(t)=c_{1} e^{-t} \cos (5 t)+c_{2} e^{-t} \sin (5 t)$
$\square y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$
$\square y(t)=c_{1} e^{2 t} \cos (26 t)+c_{2} e^{2 t} \sin (26 t)$
$\square y(t)=c_{1} e^{-4 t}+c_{2} e^{-2 t}$
$\square y(t)=c_{1} e^{t} \cos (3 t)+c_{2} e^{t} \sin (3 t)$
$\square y(t)=c_{1} e^{-t} \cos (2 \pi t)+c_{2} e^{-t} \sin (2 \pi t)$

Problem 2 (7 points)

The complete solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

can be written as

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}
$$

where c_{1} and c_{2} are arbitrary constants.
(a) (1 point). Mark the correct expression for $y(0)$ below
$\square c_{1}+c_{2}$$c_{1}-c_{2}$
$c_{1}$$2 c_{1}$
0
(b) (3 points). Mark the correct expression for $y^{\prime}(0)$ below
$\square c_{1}$
$\square c_{1}+c_{2}$$c_{1}+2 c_{2}$
$\square c_{1}-2 c_{2}$
(c) (3 points). The initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=4
$$

has a unique solution $y(t)$. Find this solution and indicate the function value $y(1)$ below.
$\square 5$
$5 e$
$\square-3 e$4
$\square 4 e$

Problem 3 (7 points)

A function is defined by

$$
f(x)=x \cos (x)
$$

(a) (3 points). Mark the correct expression for the double derivative $f^{\prime \prime}(x)$.
$\square-2 \sin (x)-x \cos (x)$
$\square-\sin (x)$
$\square \cos (x)-\sin (x)$
$\square \sin (x)-x \cos (x)$
$\square-\cos (x)$
(b) (4 points). Which of the polynomials below is the 2nd order Taylor polynomial for $f(x)$ about the point $a=0$?
$\square x-\frac{1}{2} x^{2}$
$\square 1-3 x-4 x^{2}$
$\square-x+x^{2}$
$\square 2 x+5 x^{2}$
$\square x^{2}$
$\square 3 x$
$\square 1+x^{2}$
$\square x+9 x^{2}$$x$$1+x+x^{2}$

Problem 4 (6 points)

A curve in space is given by

$$
\begin{aligned}
& x=\cos (t) \\
& y=2 \sin (t) \\
& z=t
\end{aligned}
$$

where the parameter t runs through the real numbers. Mark the correct expression for the arc length of the curve from $t=0$ to $t=\pi$.
$\square \int_{0}^{\pi} \sqrt{2} d t$
$\square \int_{0}^{\pi}(\sin (t)+2 \cos (t)+1) d t$
$\square \int_{0}^{\pi} \sqrt{\cos ^{2}(t)+4 \sin ^{2}(t)+t^{2}} d t$
$\square \int_{0}^{\pi} \sqrt{3 \cos ^{2}(t)+2} d t$
$\square \int_{0}^{\pi}(-\sin (t)+2 \cos (t)+1) d t$
$\square \int_{0}^{\pi} \sqrt{3+t^{2}} d t$

Problem 5 (8 points)

A plane curve is given by

$$
\begin{aligned}
& x=\sin (t) \\
& y=t^{2}
\end{aligned}
$$

where the parameter t runs through the real numbers.
(a) (1 point). Which point on the curve corresponds to the parameter value $t=0$?
$\square(\pi, 0)$
$\square(1,1)$
$\square(-1,1)$
$\square(0,0)$
$\square(1,0)$
(b) (7 points). What is the curvature of the curve for $t=0$?
\square
$\frac{3}{125}$
3
2
$\square \frac{1}{2}$
$\square \frac{\sqrt{2}}{2}$

Problem 6 (10 points)

A function is given by

$$
f(x, y)=\frac{x^{2}+y^{2}+1}{2 x+y}
$$

Mark the correct option in each of the subquestions below.
(a) (5 points). The domain for f consists of all points (x, y) which satisfy
$\square x \neq 0$ and $y \neq 0$
$\square y \neq-2 x$
$\square x^{2}+y^{2} \leq 1$
$\square x \geq 0$ and $y \geq 0$
$\square x^{2}+y^{2} \leq 2$
$\square 2 x+y=1$
(b) (5 points). The level curve with the equation $f(x, y)=2$ can be described as:
\square A circle with center at $(1,2)$ and radius 1 .
\square A circle with center at $(2,1)$ and radius 2 .
\square A straight line through (0,0) with slope 2 .
\square A straight line through $(0,0)$ with slope $\frac{1}{2}$.
\square A parabola with equation $y=3 x^{2}+3 x+1$.
\square A parabola with equation $y=5 x^{2}+1$.

Problem 7 (6 points)

A funktion is defined by

$$
f(x, y)=\sin \left(x^{3}+x^{2} y+y^{2}-1\right) .
$$

(a) (2 points). Indicate the function value $f(1,-1)$ below.
$\square-1$
1
π
$\frac{\pi}{2}$
0
(b) (4 point). Mark the correct expression for the partial derivative $f_{x}(x, y)$.
$\square 3 x^{2} \cos \left(x^{3}+x^{2} y+y^{2}-1\right)$
$\square \sin \left(3 x^{2}+2 x y\right)$
$\square \sin \left(3 x^{2}\right)$
$\square \cos \left(3 x^{2}+2 x y\right)$
$\square\left(3 x^{2}+2 x y\right) \cos \left(x^{3}+x^{2} y+y^{2}-1\right)$
$\square \cos \left(x^{3}+x^{2} y+y^{2}-1\right)$

Problem 8 (8 points)

A function is given by

$$
f(x, y)=x^{2}-2 y^{2}+3 x y-8 x+5 y+1
$$

(a) (4 points). Which one of the following points is a critical point for f ?
$\square(0,0)$
$\square(1,0)$
$\square(0,2)$$(1,2)$
$\square(1,1)$
(b) (4 points). What is the value of the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(1,1)$ and in the direction of the unit vector $\mathbf{u}=-\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}=$ $\left(-\frac{4}{5}, \frac{3}{5}\right)$?$\frac{3}{5}$
0
$\frac{24}{5}$
$\square 3$
$\square-\frac{11}{5}$

Problem 9 (7 points)

A surface in space \mathcal{F} is given by the equation $F(x, y, z)=0$ where

$$
F(x, y, z)=e^{x}+y^{2}+z^{3}-6 .
$$

The surface \mathcal{F} has a tangent plane at the point $P=(0,2,1)$. Mark an equation of this tangent plane below.
$\square x+y+3 z=4$
$\square x+4 y+3 z=11$
$\square 2 x-y+3 z=1$
$\square 3 x+2 y+3 z=3$
$\square x+y-z=5$
$\square 2 x+y-6 z=10$
$\square x-2 y+6 z=12$
$\square 6 x+y+z=3$
$\square x+y+z=5$
$\square x+y-z=11$

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x, y) which satisfy the inequalities

$$
x^{2}+y^{2} \leq 1, \quad 0 \leq y
$$

Mark the value of the double integral

$$
\iint_{\mathcal{R}}\left(x^{2}+y^{2}\right)^{3} d A
$$

$\square \frac{2 \pi}{3}$
$\square 6$
$\square \frac{\sqrt{3}}{2}$
$\square \frac{6 \pi}{5}$
$\square \frac{\pi}{4}$
$\square \frac{\pi}{12}$
$\square \frac{3}{4}$
$\square \frac{\pi}{8}$$\square \frac{1}{2}$

Problem 11 (5 points)

Two complex numbers are given by

$$
z_{1}=\frac{3+i}{1+2 i}+7-i, \quad z_{2}=5 e^{3 \pi i}
$$

(a) (3 points). What is z_{1} written in standard form?$8+i$
$3 i$
$5+2 i$$8-2 i$$7+i$
(b) (2 points). What is z_{2} written in standard form?$5+5 i$ \square -5
$\square 5-5 i$

Remark. In problem 12 the evaluation of your answers will be performed using the following principle: Every false mark cancels a true mark.

Problem 12 (6 points)

Let \mathcal{T} be the region in space consisting of those points (x, y, z) which satisfy the inequalities

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 2-2 x, \quad 0 \leq z \leq 3 x
$$

A solid body with density function $\delta(x, y, z)=x+1$ covers region \mathcal{T} precisely. The volume of the body is denoted V and its mass is denoted m. Mark all of the correct expressions below.
$\square \quad m=\int_{0}^{2-2 x} \int_{0}^{1} \int_{0}^{3 x}(x+1) d z d x d y$.
$\square \quad m=\int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{2+x}(x+1) d z d y d x$.
$\square \quad m=\int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{3 x}(x+1) d z d y d x$.
$\square \quad V=\int_{0}^{2} \int_{0}^{\frac{2-y}{2}} \int_{0}^{3 x} d z d x d y$.
$\square \quad V=\int_{0}^{2} \int_{0}^{1-y} \int_{0}^{3 x} d z d x d y$.

Problem 13 (8 points).

Answer the following 4 True/False problems:
(a) (2 points). The point with rectangular coordinates $(x, y)=(2,-2)$ can be described by $(r, \theta)=\left(2 \sqrt{2}, \frac{\pi}{2}\right)$ in polar coordinates.
\square True
False
(b) (2 points). Let D be the region in the plane consisting of those points (x, y) which satisfy the inequalities $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Let f be the function with rule

$$
f(x, y)=\frac{2 x}{x+y+1}
$$

and domain D. Then f attains a global maximum on D.
\square True
\square False
(c) (2 points).Let D be the region in the plane consisting of those points (x, y) which satisfy the inequalities $0<x \leq 1$ and $0 \leq y \leq 1$. Let f be the function with rule

$$
f(x, y)=\frac{1}{x+y}
$$

and domain D. Then f attains a global maximum on D.TrueFalse
(d) (2 points). For every real number b the following equation in the unknown x has precisely one solution:

$$
\arctan (x)=b
$$

Problem 14 (5 points)

The figure below shows the graph of the function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

in polar coordinates.

Which one of the following rules for f corresponds to this figure?
$\square f(\theta)=3-\cos (\theta)$
$\square f(\theta)=1+\sin (\theta)$
$\square f(\theta)=2-\cos (\theta)$
$\square f(\theta)=2 \sin (\theta)$
$\square f(\theta)=2+\sin (\theta)$
$\square f(\theta)=3 \cos (2 \theta)$

