Exam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

3 January 2017

The present exam set consists of 9 numbered pages with 13 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.
It is allowed to use books, notes etc. It is not allowed to use electronic devices.
Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your full name and student number below.

Good luck!

NAME:

STUDENT NUMBER:

Problem 1 (9 points)

A plane curve is given by

$$
\begin{aligned}
& x=t^{2} \\
& y=t^{3}-t
\end{aligned}
$$

where the parameter t runs through the real numbers.
(a) (2 points). The curve has a self-intersection at a point with first coordinate $x=1$. What is the second coordinate of this intersection point?
$\square 1$

3 \square $-1$0
(b) (7 points). What is the curvature of the curve for $t=0$?
$\square 3$
$\frac{1}{2}$$\square \frac{\sqrt{3}}{2}$
$\square \frac{\sqrt{2}}{2}$$\square \sqrt{3}$

Problem 2 (9 points)

A curve in space is given by

$$
\begin{aligned}
& x=\frac{1}{2} t^{2}, \\
& y=\frac{1}{3}(2 t)^{\frac{3}{2}}, \\
& z=t,
\end{aligned}
$$

where the parameter t runs through the positive real numbers.
(a) (2 points). Mark the correct expression for the derivative y^{\prime}.$t \sqrt{2 t}$
t
$\sqrt{2 t}$
$t \sqrt{t}$
$\square \sqrt{t}$
(b) (7 points). What is the arc length of the curve from $t=2$ to $t=4$?8
$\frac{\sqrt{2}}{3}$10
$\frac{5}{2}$$\sqrt{3}$

Problem 3 (7 points)

A function is defined by

$$
f(x)=\ln (\cos x)
$$

for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(a) (2 points). Mark the correct expression for the derivative $f^{\prime}(x)$.
$\square \frac{1}{\cos x}$
$\square \frac{\sin x}{x}$
$\square-\frac{1}{\sin x}$
$\square-\tan x$
$\square \frac{1}{x}$
$\square \frac{\cos x}{x}$
(b) (5 points). Which one of the polynomials below is the second order Taylor polynomial for $f(x)$ about the point $x=0$?
$\square x+\frac{3}{2} x^{2}$
$\square x-x^{2}$
$\square 1-3 x$
$\square 2 x+\frac{5}{2} x^{2}$
$\square-\frac{1}{2} x^{2}$
$\square 2+x-3 x^{2}$
$\square 1+3 x^{2}$
$\square x^{2}$
$\square 1+x-\frac{3}{2} x^{2}$
$\square 1-x+x^{2}$

Problem 4 (5 points)

Two complex numbers are given by

$$
z_{1}=(1-i)(2-3 i)+7 i, \quad z_{2}=i(1+i) .
$$

(a) (2 points). What is z_{1} written in standard form?
$\square 2+10 i$$1+i$
$\square-1+2 i$
i
$3-i$
(b) (3 points). What is z_{2} written in polar form?
$\square \sqrt{2} e^{3 \pi i / 4}$$\sqrt{2} e^{\pi i / 2}$
$\square 2 e^{\pi i / 4}$$e^{-\pi i / 4}$
$\square e^{2 i}$

Problem 5 (10 points)

(a) (6 points). A homogeneous second order differential equation is given by

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

A number of function expressions, which contain two arbitrary constants c_{1} and c_{2}, are listed below. Mark the expression which constitute the general solution of the differential equation.$y(t)=c_{1} e^{4 t}+c_{2} e^{5 t}$$y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$
$\square y(t)=c_{1} e^{-2 t}+c_{2} e^{3 t}$
$\square y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$
$\square y(t)=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$
$\square y(t)=c_{1} e^{-t} \cos (3 t)+c_{2} e^{-t} \sin (3 t)$
$\square y(t)=c_{1} e^{-t} \cos (5 t)+c_{2} e^{-t} \sin (5 t)$
$\square y(t)=c_{1} e^{-2 t} \cos (4 t)+c_{2} e^{-2 t} \sin (4 t)$
(b) (4 points). The function $f(t)=\frac{1}{4} t$ is seen to be a particular solution to the inhomogeneous differential equation

$$
y^{\prime \prime}+4 y^{\prime}+20 y=1+5 t .
$$

Mark a particular solution to the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+20 y=1+5 t+5 e^{t}
$$

among the following function expressions:
$\square g(t)=2 t+e^{t}$
$\square g(t)=\frac{1}{4} t+3 e^{t}$
$\square g(t)=\frac{1}{4} t+\frac{1}{5} e^{t}$
$\square g(t)=\frac{1}{4} t+\frac{1}{2} e^{10 t}$
$\square g(t)=\frac{1}{4} t+e^{5 t}$
$\square g(t)=\frac{1}{8} t+\frac{1}{8} t^{2}+e^{t}$
$\square g(t)=t^{2}+e^{-t}$
$\square g(t)=\frac{1}{4} t+5 e^{t}$

Problem 6 (9 points)

A function is given by

$$
f(x, y)=\frac{2 x^{2}-2 y+3}{x^{2}-y}
$$

Mark the correct option in each of the subquestions below.
(a) (4 points). The domain for f consists of all points (x, y) which satisfy
$\square x^{2}>y$
$\square y \leq x$
$\square y \neq x^{2}$
$\square 2 x-1 \neq 0$
$\square x^{2}+y^{2} \leq 1$
$\square y \leq 0$
(b) (5 points). The level curve with equation $f(x, y)=5$ can be described as:A parabola with equation $y=x^{2}-1$.A parabola with equation $y=2 x^{2}-y+3$.A straight line through $(0,0)$ with slope 3 .A straight line through $(0,3)$ with slope 2 .A circle with center $\left(0, \frac{3}{2}\right)$ and radius 2.A circle with center $(1,2)$ and radius $\frac{1}{2}$.

Problem 7 (5 points)

A function is defined by

$$
f(x, y)=x^{2} \arctan y .
$$

Mark the correct expression for the second order partial derivative $f_{x y}(x, y)$.
$\square 2 x\left(1+\tan ^{2} y\right)$
$\square \frac{2 x}{\sqrt{1-y^{2}}}$
$\square \frac{2}{1+y^{2}}$
$\square 2 \arctan y$
$\square \frac{2 x}{1+y^{2}}$
$\square \frac{-2 x^{2} y}{\left(1+y^{2}\right)^{2}}$

Problem 8 (12 points)

A function is defined by

$$
f(x, y)=x^{3}+y-x y .
$$

(a) (1 point). Indicate the function value $f(-1,1)$.
$\square 1$
$\square-1$3
$\square-3$
(b) (3 points). Which one of the following points is a critical point for f ?
$\square(1,1)$
$\square(-1,2)$
$\square(1,3)$
$\square(2,1)$
$\square(1,2)$
(c) (4 points). The graph of f has a tangent plane at the point $P=(-1,1, f(-1,1))$. Mark an equation for this tangent plane.
$\square 2 x+2 y-z=-1$
$\square x+2 y-z=3$
$\square x+2 y+z=2$
$\square x-z=3$
$\square-x+y-z=1$
$3 x+2 y-z=2$
(d) (4 points). Let $g(t)$ and $h(t)$ be two differentiable functions satisfying the conditions $g(0)=2, g^{\prime}(0)=1$ and $h(0)=0, h^{\prime}(0)=2$. Consider the composite function

$$
w(t)=f(g(t), h(t))
$$

What is the value of the derivative $w^{\prime}(0)$?

$\square 0$	$\square 13$	$\square 2$	$\square-1$	$\square \frac{1}{2}$
$\square 7$	$\square 10$	$\square 3$	$\square 8$	$\square-\frac{3}{2}$

Problem 9 (5 points)

A function is defined by

$$
f(x, y, z)=x^{2}-e^{y}+e^{z+1}
$$

What is the value of the directional derivative $D_{\mathbf{u}} f(P)$ at the point $P=(1,0,-1)$ and in the direction of the unit vector $\mathbf{u}=\frac{1}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$?
$\square \frac{1}{3}$
$\square \frac{4}{3}$
$\square-3$
$\square-\frac{\sqrt{2}}{2}$
$\square \frac{1}{2}$
$\square 2$
$\square \frac{\sqrt{3}}{3}$$\square \frac{2}{3}$
$\square 7$

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x, y) which satisfy the inequalities

$$
x^{2}+y^{2} \leq \frac{\pi}{2}, \quad 0 \leq y
$$

Mark the value of the double integral

$$
\iint_{\mathcal{R}} \cos \left(x^{2}+y^{2}\right) d A
$$

$\square \frac{1}{2}$
$\square \frac{4 \pi}{3}$
$\square \frac{11}{7}$
$\frac{\pi}{2}$
$\square \frac{5}{2}$
$\square \frac{3 \pi}{11}$
$\square \frac{\pi^{2}}{4}$
$\square \frac{2 \pi}{7}$
$\square \frac{\pi}{4}$

Remark. In problem 11 the evaluation of your answers will be performed using the following principle: Each false mark cancels a true mark.

Problem 11 (6 points)

Let \mathcal{T} be the region in space consisting of those points (x, y, z) which satisfy the inequalities

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 1-x, \quad 0 \leq z \leq 1-x-y
$$

A solid body with density function $\delta(x, y, z)=1-z$ covers region \mathcal{T} precisely. The volume of the body is denoted V and its mass is denoted m. Mark all of the correct expressions below.
$\square \quad m=\int_{0}^{1-x-y} \int_{0}^{1-x} \int_{0}^{1}(1-z) d x d y d z$.
$\square \quad m=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x-y}(1-z) d z d y d x$.
$\square \quad m=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y}(1-z) d z d y d x$.
$\square \quad V=\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x-y} d z d x d y$.
$\square \quad V=\int_{0}^{1-x} \int_{0}^{1} \int_{0}^{1-x-y} d z d x d y$.

Problem 12 (8 points).

Answer the following 4 True/False problems:
(a) (2 points). The equation

$$
\frac{d}{d x}\left(\left(x^{2}+1\right) \arctan x\right)=2 x \arctan x+1
$$

holds for every real number x.
\square True
(b) (2 points). The point with polar coordinates $(r, \theta)=(-5, \pi)$ has rectangular coordinates $(x, y)=(-5,0)$.
True
(c) (2 points). For every complex number z one has

$$
|i z|=-|z| .
$$

(d) (2 points). Let D be the region in the plane consisting of those points (x, y) which satisfy the inequality $x^{2}+y^{2} \leq 4$. Let f be the function with rule

$$
f(x, y)=x^{2} y-e^{x}
$$

and domain D. Then f attains a global minimum on D.True

Opgave 13 (5 points)

The figure below shows the graph of the function

$$
r=f(\theta), \quad 0 \leq \theta \leq 2 \pi
$$

in polar coordinates.

Which one of the following rules for f corresponds to the figure?
$\square f(\theta)=\sin (2 \theta)$
$\square f(\theta)=2-\sin \theta$
$\square f(\theta)=1-\cos \theta$
$\square f(\theta)=1+2 \sin \theta$
$\square f(\theta)=\sin ^{2} \theta$
$\square f(\theta)=\cos ^{2} \theta$

