Exam in Calculus

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

3 January 2017

The present exam set consists of 9 numbered pages with 13 multiple-choice problems. A number of points are specified for each question. The total number of points equals 100.

It is allowed to use books, notes etc. It **is not** allowed to use electronic devices.

Your answers must be marked directly in this exam set. The grading of the exam is based solely on these marks. Remember to write your **full name** and **student number** below.

Good luck!

NAME:	
STUDENT NUMBER:	

Problem 1 (9 points)

A plane curve is given by

$$x = t^2,$$

$$y = t^3 - t,$$

where the parameter t runs through the real numbers.

- (a) (2 points). The curve has a self-intersection at a point with first coordinate x = 1. What is the second coordinate of this intersection point?
 - $\prod 1$
- \prod 3
- $\prod -1$
- $\prod 0$
- $\prod 2$
- (b) (7 points). What is the curvature of the curve for t = 0?

- $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $\frac{\sqrt{3}}{2}$

Problem 2 (9 points)

A curve in space is given by

$$x = \frac{1}{2}t^2,$$

$$y=\frac{1}{3}(2t)^{\frac{3}{2}},$$

$$z = t$$

where the parameter t runs through the positive real numbers.

- (a) (2 points). Mark the correct expression for the derivative y'.
 - $\int t\sqrt{2t}$
- \Box t \Box $\sqrt{2t}$ \Box t \sqrt{t}
- (b) (7 points). What is the arc length of the curve from t = 2 to t = 4?

Problem 3 (7 points)

A function is defined by

$$f(x) = \ln(\cos x)$$

for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

(a) (2 points). Mark the correct expression for the derivative f'(x).

 \Box – tan x

 $\frac{1}{r}$

 $\frac{\cos x}{x}$

(b) (5 points). Which one of the polynomials below is the second order Taylor polynomial for f(x) about the point x = 0?

 $\prod x - x^2$

 $\prod 1-3x$

 $2x + \frac{5}{2}x^2$

 $\bigcap -\frac{1}{2}x^2$

 $\prod x^2$

 $1 + x - \frac{3}{2}x^2$

 $\prod 1-x+x^2$

Problem 4 (5 points)

Two complex numbers are given by

$$z_1 = (1-i)(2-3i) + 7i$$
, $z_2 = i(1+i)$.

(a) (2 points). What is z_1 written in standard form?

 $\bigcap 2+10i$ $\bigcap 1+i$ $\bigcap -1+2i$ $\bigcap i$

 $\prod 3-i$

(b) (3 points). What is z_2 written in polar form?

 $\prod e^{2i}$

Problem 5 (10 points)

(a) (6 points). A homogeneous second order differential equation is given by

$$y'' + 4y' + 20y = 0.$$

A number of function expressions, which contain two arbitrary constants c_1 and c_2 , are listed below. Mark the expression which constitute the general solution of the differential equation.

- $y(t) = c_1 e^{-t} \cos(3t) + c_2 e^{-t} \sin(3t)$
- $y(t) = c_1 e^{-t} \cos(5t) + c_2 e^{-t} \sin(5t)$
- $y(t) = c_1 e^{-2t} \cos(4t) + c_2 e^{-2t} \sin(4t)$
- (b) (4 points). The function $f(t) = \frac{1}{4}t$ is seen to be a particular solution to the inhomogeneous differential equation

$$y'' + 4y' + 20y = 1 + 5t.$$

Mark a particular solution to the differential equation

$$y'' + 4y' + 20y = 1 + 5t + 5e^t$$

among the following function expressions:

 $\prod g(t) = 2t + e^t$

Problem 6 (9 points)

A function is given by

$$f(x,y) = \frac{2x^2 - 2y + 3}{x^2 - y}.$$

Mark the correct option in each of the subquestions below.

- (a) (4 points). The domain for f consists of all points (x, y) which satisfy

 $y \le x$

 $y \neq x^2$

 $2x - 1 \neq 0$

- $y \le 0$
- (b) (5 points). The level curve with equation f(x,y) = 5 can be described as:
 - \Box A parabola with equation $y = x^2 1$.
 - \square A parabola with equation $y = 2x^2 y + 3$.
 - \square A straight line through (0,0) with slope 3.
 - \square A straight line through (0,3) with slope 2.
 - \square A circle with center $(0, \frac{3}{2})$ and radius 2.
 - \square A circle with center (1,2) and radius $\frac{1}{2}$.

Problem 7 (5 points)

A function is defined by

$$f(x,y) = x^2 \arctan y$$
.

Mark the correct expression for the second order partial derivative $f_{xy}(x,y)$.

2 arctan *y*

Problem 8 (12 points)

A function is defined by

$f(x,y) = x^3 + y - xy.$									
(a) (1 point). Indicate the function value $f(-1,1)$.									
	1	□ -1	<u> </u>	□ 3	□ -3				
(b)	(3 points). Wh	ich one of the f	ollowing point	s is a critical po	int for f ?				
	☐ (1,1)	☐ (−1,2)	☐ (1,3)	☐ (2,1)	☐ (1,2)				
(c)	(4 points). The graph of f has a tangent plane at the point $P = (-1, 1, f(-1, 1))$. Mark an equation for this tangent plane.								
		x = -1		2y - z = 3					
		= 2		z = 3					
		= 1		+2y-z=2					
(d)	d) (4 points). Let $g(t)$ and $h(t)$ be two differentiable functions satisfying the conditions $g(0) = 2$, $g'(0) = 1$ and $h(0) = 0$, $h'(0) = 2$. Consider the composite function $w(t) = f(g(t), h(t))$.								
	What is the value of the derivative $w'(0)$?								
	<u> </u>	□ 13	□ 2	□ -1	$\frac{1}{2}$				
	□ 7	□ 10	□ 3	□ 8	$\Box -\frac{3}{2}$				

Problem 9 (5 points)

A function is defined by

$$f(x,y,z) = x^2 - e^y + e^{z+1}$$
.

What is the value of the directional derivative $D_{\bf u}f(P)$ at the point P=(1,0,-1) and in the direction of the unit vector ${\bf u}=\frac{1}{3}{\bf i}+\frac{2}{3}{\bf j}+\frac{2}{3}{\bf k}=(\frac{1}{3},\frac{2}{3},\frac{2}{3})$?

$\frac{1}{3}$	$\Box \frac{4}{3}$	□ -3		$\frac{1}{2}$
□ 2		<pre>1</pre>	$\frac{2}{3}$	□ 7

Problem 10 (10 points)

A region \mathcal{R} in the plane consists of those points (x,y) which satisfy the inequalities

$$x^2 + y^2 \le \frac{\pi}{2}, \quad 0 \le y.$$

Mark the value of the double integral

$$\iint_{\mathcal{R}} \cos(x^2 + y^2) \, dA.$$

 $\frac{3\pi}{11}$

 $\prod 1$

Remark. In problem 11 the evaluation of your answers will be performed using the following principle: Each false mark cancels a true mark.

Problem 11 (6 points)

Let \mathcal{T} be the region in space consisting of those points (x, y, z) which satisfy the inequalities

$$0 \le x \le 1$$
, $0 \le y \le 1 - x$, $0 \le z \le 1 - x - y$.

A solid body with density function $\delta(x, y, z) = 1 - z$ covers region \mathcal{T} precisely. The volume of the body is denoted *V* and its mass is denoted *m*. Mark all of the correct expressions below.

 \square $m = \int_0^1 \int_0^1 \int_0^{1-x-y} (1-z) \, dz \, dy \, dx.$

Problem 12 (8 points).

Answer the following 4 True/False problems:

(a) (2 points). The equation

$$\frac{d}{dx}((x^2+1)\arctan x) = 2x\arctan x + 1$$

holds for every real number x.

☐ True

☐ False

(b) (2 points). The point with polar coordinates $(r, \theta) = (-5, \pi)$ has rectangular coordinates (x, y) = (-5, 0).

☐ True

☐ False

(c) (2 points). For every complex number z one has

$$|iz| = -|z|$$
.

☐ True

☐ False

(d) (2 points). Let D be the region in the plane consisting of those points (x,y) which satisfy the inequality $x^2 + y^2 \le 4$. Let f be the function with rule

$$f(x,y) = x^2y - e^x$$

and domain D. Then f attains a global minimum on D.

☐ True

☐ False

Opgave 13 (5 points)

The figure below shows the graph of the function

$$r = f(\theta), \quad 0 \le \theta \le 2\pi$$

in polar coordinates.

Which one of the following rules for f corresponds to the figure?