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Chapter 1

Geometric Transformations of Images

Keywords: Image processing, computer graphics, linear transformation,
affine transformation, transformation matrix.

Images can be transformed in many ways. One class of transforma-
tions is called “linear transformations,” which include scaling, rotation,
and shearing. For the purpose of illustration, we can think of an image
as a grid of small “picture elements” (i.e. pixels) where each pixel has co-
ordinates (x, y), see Figure 1.1a. The coordinates (x, y) of each pixel are
then transformed to new coordinates (x′, y′) in order to transform the whole
image.
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Figure 1.1: (a) Original image with pixel coordinates x and y between −1
and +1 and (b) scaled image with pixel coordinates x′ and y′.
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6 Chapter 1. Geometric Transformations of Images

1.1 Scaling

For a (linear) scaling transformation with scaling factor sx in x direction
and scaling factor sy in y direction, the equations are:

x′ = xsx (1.1)

y′ = ysy (1.2)

If the coordinates of each pixel are transformed this way and the pixels
are displayed at their new positions (x′, y′), the resulting image is a scaled
version of the original; see Figure 1.1b for an example. We can also write
the equations of the transformation in vector notation:

[
x′

y′

]
=

[
sx 0
0 sy

] [
x
y

]
(1.3)

The matrix is called a “transformation matrix.” Often only the matrix is
used to specify the transformation, which allows for a very compact specifi-
cation. Note that negative scaling factors result in scaled reflections of the
image at the coordinate axes.
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Figure 1.2: (a) Rotated image and (b) sheared image.
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1.2 Rotation

A counter-clockwise rotation by an angle θ is described by this transforma-
tion:

x′ = x cos θ − y sin θ (1.4)

y′ = x sin θ + y cos θ (1.5)

An example with a horizontal shift is depicted in Figure 1.2a. In vector
notation, the equation becomes:[

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(1.6)

1.3 Shearing

Shearing is a kind of shift of the image — horizontally by bx or vertically
by by; an example is depicted in the Figure 1.2b. The equations are:

x′ = x+ ybx (1.7)

y′ = xby + y (1.8)

And in vector notation: [
x′

y′

]
=

[
1 bx
by 1

] [
x
y

]
(1.9)

1.4 Combination of Transformations

One powerful insight is that the basic linear transformations (i.e. scaling,
rotation, and shearing) can be combined by applying a transformation to
an already transformed image. Thus, any number of linear transformations
can be combined (or concatenated) by applying each transformation to the
image that has been transformed with the previous transformations. It
turns out that the combination of any two linear transformations is again
a linear transformation. Furthermore, the transformation matrix of a com-
bined linear transformation is just the matrix product of the transformation
matrices corresponding to the linear transformations that are combined.
Note, however, that these matrix products have to be read from right to
left: the right-most matrix is applied first (since vectors are multiplied from
the right) and the left-most matrix is applied last. This order is important



8 Chapter 1. Geometric Transformations of Images

+1-1

+1

-1

x'

y'

(a)

+1-1

+1

-1

x'

y'

(b)

Figure 1.3: (a) Scaled image and (b) scaled and then rotated image.

because matrix products are not commutative (i.e., you are not allowed to
change the order of factors in a matrix product).

For an example, consider Figure 1.3. We first scale the image and then
rotate it. The vector equation would be:[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
sx 0
0 sy

] [
x
y

]
=

[
sx cos θ −sy sin θ
sx sin θ sy cos θ

] [
x
y

]
(1.10)

Note that the matrix product has to be read from right to left: the order
here is first the scaling and then the rotation.

1.5 Geometric Meaning of the Column

Vectors of a Transformation Matrix

Before we move on to more general transformations, consider the trans-
formation of the “canonical basis vectors” (1, 0) and (0, 1) by an arbitrary
linear transformation, which is specified by a 2× 2 transformation matrix:[
a1,1 a1,2

a2,1 a2,2

] [
1
0

]
=

[
a1,1

a2,1

]
and

[
a1,1 a1,2

a2,1 a2,2

] [
0
1

]
=

[
a2,1

a2,2

]
(1.11)

These equations mean that the vector (1, 0) is transformed to the first col-
umn vector (a1,1, a2,1) of the transformation matrix; i.e., the first column
vector is the “image” (in the mathematical sense) of the first canoncial basis
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vector (1, 0). Similarly, the vector (0, 1) is transformed to the second col-
umn vector (a1,2, a2,2). Since the transformation matrix specifies the linear
transformation completely, this observation has important consequences:

1. To understand what any linear transformation does, you only need to
look at the column vectors of the transformation matrix, which specify
how the canoncial basis vectors are transformed. This describes the
behavior of the transformation completely.

2. To create a transformation matrix for a specific purpose, all you need
to know is how the canonical basis vectors should be transformed.
Once you know where the canoncial basis vectors are transformed to
(i.e., what their “images” are), you can simply put these transformed
vectors into the columns of a matrix. The resulting matrix is the
correct transformation matrix.
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Figure 1.4: (a) Translated image. (b) Image rotated about the upper right
corner.

1.6 Translation and Affine Transformations

The last basic transformation that is discussed here is a translation by a
horizontal offset ∆x and a vertical offset ∆y. An example is depicted in
Figure 1.4a. The equations are:

x′ = x+ ∆x (1.12)

y′ = y + ∆y (1.13)
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And in vector notation: [
x′

y′

]
=

[
x
y

]
+

[
∆x
∆y

]
(1.14)

If a linear transformation is combined with a translation, the result is
an “affine transformation.” If the linear transformation matrix consists of
column vectors (a1,1, a2,1) and (a1,2, a2,2) and the translation is specified by
the vector (∆x, ∆y), the resulting equations are:

x′ = a1,1x+ a1,2y + ∆x (1.15)

y′ = a2,1x+ a2,2y + ∆y (1.16)

In order to write this as a matrix-vector product, we can use “homo-
geneous coordinates.” These are also used for projective transformations,
which will not be discussed here. The main difference is that all vectors are
given a third coordinate, which is always 1 for the transformations discussed
here:  x′

y′

1

 =

 a1,1 a1,2 ∆x
a2,1 a2,2 ∆y
0 0 1

 x
y
1

 (1.17)

As shown in the equation, the top-left 2 × 2 part of the transformation
matrix is the same as the linear transformation matrix, the third column
(∆x, ∆y, 1) is just the translation vector with 1 as third coordinate, and
the third row is always (0, 0, 1) for 2D affine transformations.

One special case is a translation without a linear transformation, which
can be represented as a translation combined with an identity linear trans-
formation: x′

y′

1

 =

 x
y
1

+

 ∆x
∆y
0

 =

 1 0 ∆x
0 1 ∆y
0 0 1

 x
y
1

 (1.18)

1.7 Rotation about an Arbitrary Point

Similarly to linear transformations, affine transformations can be combined
to form new affine transformations. Moreover, the 3 × 3 transformation
matrix for the combined affine transformation is just the matrix product
of the 3× 3 transformation matrices of the affine transformations that are
combined. Again, the matrix product has to be read from right to left and
the order is important.
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One example is the rotation about an arbitrary point, for example, the
point (1, 1) as in Figure 1.4b. With a linear transformation, we can only
describe rotations about the origin (0, 0). Affine transformations allow us to
specify rotations about any point. Let’s assume that we want to rotate the
image counter-clockwise by an angle θ about the point (cx, cy). To compute
the required transformation matrix, we first translate the image such that
the point (cx, cy) is transformed to the origin (0, 0); i.e., we set ∆x = −cx
and ∆y = −cy. Then we can rotate with the linear transformation matrix
for a rotation about the origin (without translation; thus, the third column
is (0, 0, 1)). Finally, we have to translate the origin back to the point (cx, cy)
by using the inverse translation with ∆x = cx and ∆y = cy. Remember
that the matrix product has to be read from right to left; therefore, we get: x′

y′

1

 =

 1 0 cx
0 1 cy
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 1 0 −cx
0 1 −cy
0 0 1

 x
y
1


=

 cos θ − sin θ cx
sin θ cos θ cy

0 0 1

 1 0 −cx
0 1 −cy
0 0 1

 x
y
1


=

 cos θ − sin θ −cx cos θ + cy sin θ + cx
sin θ cos θ −cx sin θ − cy cos θ + cy

0 0 1

 x
y
1

 (1.19)

Computing such a matrix product once and transforming all pixels with it
is usually much more efficient than applying all individual transformations
to all pixels.

1.8 Forward and Backward Mapping

So far, we considered the transformation of each pixel from a position (x, y)
to a new position at (x′, y′) which can be computed with a transformation
matrix, say M :  x′

y′

1

 = M

 x
y
1

 (1.20)

This is called forward mapping, and conceptually it is perfectly fine. How-
ever, in more than 99% of all cases, this is not how computers actually
transform images. Instead, a computer would usually loop over all new
positions (x′, y′) and compute for each position (x′, y′) the position (x, y) in
the original image from where a pixel is mapped to (x′, y′). This is called
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backward mapping. (The reason why computers use backward mapping is
that looking up a pixel color at any position (x, y) in the original image is
extremely fast, and looping over all output pixels results in processing each
of them only once; i.e., it is not less and not more work than absolutely
necessary.) Thus, the computer has to compute (x, y) from (x′, y′), which
is possible with the inverse matrix M−1: x

y
1

 = M−1

 x′

y′

1

 (1.21)

Thus, image transformations on computers usually require the computation
of inverse matrices.

Further Reading

More details and more general transformations are discussed in Chapter 10
of the book T.B. Moeslund, Introduction to Video and Image Processing,
Springer Verlag London Limited, 2012.



Chapter 2

Geometric Transformations in 3D Computer

Graphics

Keywords: Computer graphics, affine transformation, modeling trans-
formation.

In 3D computer graphics — in particular in real-time 3D computer
graphics — most surfaces are represented by meshes. The vertices of each
mesh (i.e. the corners of its polygons) are usually defined in a coordinate
system that is specific to each mesh; i.e., each mesh has its own local co-
ordinate system. These coordinates are also called “object coordinates” or
“model coordinates.” Here, we will denote the coordinates of a 3D point
in object coordinates by (xo, yo, zo). Figure 2.1a shows a screen shot of a
spherical mesh in the free modeling tool Blender. The large colored axes
represent the local coordinate system of the spherical object. (By conven-
tion, the x axis is red, the y axis is green, and the z axis is blue.)

(a) (b)

Figure 2.1: (a) A spherical mesh in Blender with colored axes representing
the local object coordinate system (large arrows) and the world coordinate
system (small arrows). (b) A spherical mesh that is scaled and rotated.

13
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2.1 General Form of the Modeling

Transformation

The vertices of each mesh are transformed from the local coordinate sys-
tem to a “world coordinate system” by an affine transformation, which can
include scaling, rotation, shearing, translation, etc. This transformation is
often called the “modeling transformation.” While there are many local
object coordinate systems (one for each object), there is usually only one
common world coordinate system in a scene. Each object usually has its
own specific modeling transformation, which allows for an individual trans-
formation of each object from its local object coordinate system to the
world coordinate system. Here, we denote the coordinates of a 3D point
in world coordinates by (xw, yw, zw). In Figure 2.1a, the directions of the
world coordinate axes are represented by the small colored arrows in the
lower left corner.

The modeling transformation (from object coordinates (xo, yo, zo) to
world coordinates (xw, yw, zw)) usually consists of a linear transformation
(for scalings, rotations, shearings, etc.), which could be represented by
a 3 × 3 matrix with column vectors (a1,1, a2,1, a3,1), (a1,2, a2,2, a3,2), and
(a1,3, a2,3, a3,3), and a translation by some vector, say (tx, ty, tz); i.e., it is an
affine transformation. The vector equation is then written as: xw

yw
zw

 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 xo
yo
zo

+

 tx
ty
tz

 (2.1)

In order to write this equation as a single matrix-vector product, ho-
mogeneous coordinates are usually used. (These allow also for perspective
transformations, which are not discussed here.) This means mainly that all
points get a fourth coordinate, which is always 1 as long as we only use affine
transformations. The general form of an affine modeling transformation is
then: 

xw
yw
zw
1

 =


a1,1 a1,2 a1,3 tx
a2,1 a2,2 a2,3 ty
a3,1 a3,2 a3,3 tz
0 0 0 1



xo
yo
zo
1

 (2.2)

This general transformation matrix has 12 independent parameters, i.e.,
there are 12 degrees of freedom. However, it is much more common to work
with more basic modeling transformations that have only 1 to 4 parameters
as discussed below.
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While points get 1 as a fourth coordinate, directions get 0 as their
fourth coordinate. Thus, the vector (x̂o, ŷo, ẑ0, 0) describes a direction in
object coordinates. The transformation to world coordinates uses the same
transformation matrix as the transformation of points:

x̂w
ŷw
ẑw
0

 =


a1,1 a1,2 a1,3 tx
a2,1 a2,2 a2,3 ty
a3,1 a3,2 a3,3 tz
0 0 0 1



x̂o
ŷo
ẑo
0

 (2.3)

This is equivalent to: x̂w
ŷw
ẑw

 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 x̂o
ŷo
ẑo

 (2.4)

This is the same as the transformation of points, except that the translation
is missing. This is in fact correct because directions are not affected by
translations. For example, the vector from one point to another point (as
computed by the difference of the two points) will always be the same
regardless of any simultaneous translation of both points. In this sense,
this difference vector is not affected by translations.

Thus, we can correctly transform points and directions with the same
4 × 4 transformation matrix provided that the fourth coordinate of points
is 1 and the fourth coordinate of directions is 0.

2.2 Basic Modeling Transformations

This section discusses some important special cases of modeling transforma-
tions and the corresponding modeling matrices. For example, a translation
by the vector (tx, ty, tz) is achieved with a model matrix of the following
form: 

xw
yw
zw
1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



xo
yo
zo
1

 (2.5)

A scaling with a factor sx in x direction, sy in y direction, and sz in z
direction, is achieved this way:

xw
yw
zw
1

 =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



xo
yo
zo
1

 (2.6)
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An example that includes a scaling along the z axis is presented in Fig-
ure 2.1b.

A rotation by an angle θ about the x axis, is described by this equation:


xw
yw
zw
1

 =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



xo
yo
zo
1

 (2.7)

Similarly, a rotation by an angle ψ about the y axis is described by this
equation: 

xw
yw
zw
1

 =


cosψ 0 sinψ 0

0 1 0 0
− sinψ 0 cosψ 0

0 0 0 1



xo
yo
zo
1

 (2.8)

And a rotation by an angle ϕ about the z axis is specified by this equa-
tion: 

xw
yw
zw
1

 =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1



xo
yo
zo
1

 (2.9)

A more general rotation by an angle α about a normalize axis (x, y, z)
would compute the vector (xw, yw, zw, 1) by: (1− cosα)xx+ cosα (1− cosα)x y − z sinα (1− cosα)z x+ y sinα 0

(1− cosα)x y + z sinα (1− cosα)y y + cosα (1− cosα)y z − x sinα 0
(1− cosα)z x− y sinα (1− cosα)y z + x sinα (1− cosα)z z + cosα 0

0 0 0 1


 xo

yo
zo
1



2.3 Combination of Modeling

Transformations

Affine transformations can be combined to form new affine transformations.
Correspondingly, the basic modeling transformations can be combined to
form more complex modeling transformations. In practice, this is performed
by multiplying the corresponding modeling matrices. For example, a scaling
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operation followed by a translation is described by this equation:
xw
yw
zw
1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



xo
yo
zo
1

 (2.10)

=


sx 0 0 tx
0 sy 0 ty
0 0 sz tz
0 0 0 1



xo
yo
zo
1

 (2.11)

Note that the scaling matrix appears to the right of the translation matrix
because it is applied first and these matrix products have to be read from
right (where the vector is multiplied) to the left.

Another very common combination is the multiplication of three rota-
tion matrices about fixed axes to describe any rotation. The three angles
are then often called “Euler angles.” There are various ways of defining
this kind of rotation. In the game engine Unity, the order is: a rotation by
ϕ about the z axis, followed by a rotation by θ about the x axis, followed
by a rotation by ψ about the y axis. Again, the matrix product has to be
read from right to left; thus, it is:

xw
yw
zw
1

 =


cosψ 0 sinψ 0

0 1 0 0
− sinψ 0 cosψ 0

0 0 0 1




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1




cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1



xo
yo
zo
1

 (2.12)

In computer graphics, the matrix product of the three matrices would be
evaluated to compute a new modeling matrix because it is more efficient
to transform all vertices with this new modeling matrix than to apply all
three rotation matrices to all vertices.

It should be mentioned that combinations of rotation matrices and
translation matrices are sometimes referred to as “rigid transformations”
because these are the transformations that don’t deform the shape of ob-
jects; i.e., they respect the rigidity of rigid bodies. Since all translations are
described by 3 coordinates (tx, ty, tz) and all rotations are described by 3
Euler angles ϕ, θ, and ψ, these rigid-body transformations have 3 + 3 = 6
degrees of freedom.
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Figure 2.2: A simple model of a robot arm in Blender.

2.4 Object Hierarchies

Many compound objects are organized in an object hierarchy. Consider the
robot arm in Figure 2.2. The right-most sphere represents a shoulder joint.
Let’s denote its transformation matrix by Mshoulder. Thus, the vertices of
that shoulder sphere are transformed this way:

xw
yw
zw
1

 = Mshoulder


xo
yo
zo
1

 (2.13)

The idea of an object hierarchy is that some objects are “children” to
other objects. For example, the sphere representing the elbow joint could
be a child of the shoulder sphere. From the point of view of transforma-
tions, this means that the elbow sphere should follow the transformation
of its parent; i.e., if the shoulder is moved, the elbow should follow; if the
shoulder is rotated, the shoulder should move accordingly. Technically, this
is achieved by specifying a local transformation matrix Melbow for the elbow
sphere which is multiplied with the transformation matrix of the shoulder
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Mshoulder to compute the actual modeling matrix for the vertices of the elbow
sphere: 

xw
yw
zw
1

 = MshoulderMelbow


xo
yo
zo
1

 (2.14)

In this way, the vertices of the elbow sphere are affected by both, the
transformation matrix of the shoulder joint and the local transformation of
the elbow joint.

As we go along the arm, we go deeper into the hierarchy: the cylinder
representing the wrist joint should be affected by a local transformation
Mwrist relative to the elbow joint but also by the transformation matrices
Melbow and Mshoulder:

xw
yw
zw
1

 = MshoulderMelbowMwrist


xo
yo
zo
1

 (2.15)

In general, the local transformation matrix of each object is multiplied
with all the transformation matrices of its parent, grandparent, great-
grandparent, etc. Note that the order of the multiplication is important:
when reading from right (where vertices are multiplied) to left, we have to
start with the “deepest” transformation matrix, which is also “closest” to
the vertices.

In summary, matrix multiplication is not only a mathematical tool for
combining basic modeling transformations such as rotations and transla-
tions but it is also the technical foundation of arbitrarily complex hierar-
chies of meshes.

Further Reading

A detailed introduction into affine transformations in 3D computer graph-
ics is provided in Chapter 4 of James M. Van Verth and Lars M. Bishop,
Essential Mathematics for Games and Interactive Applications — A Pro-
grammer’s Guide, 2nd ed., Morgan Kaufmann Publishers, 2008.

The screen shots were produced with the “Blender 3d content creation
suite” by the Blender Foundation, see http://www.blender.org.





Chapter 3

Active and Passive Transformations in Computer

Graphics

Keywords: Computer graphics, active transformation, passive transfor-
mation, change of basis.

Transforming points and directions is an important part of 3D computer
graphics. In fact, the whole process of rendering a polygonal mesh onto a
screen is often described as a sequence of coordinate transformations; for
example, from object coordinates to world coordinates etc. The transfor-
mations are described by 4×4 matrices, points are described by 4D vectors
with 1 in the fourth coordinate, and directions are described by 4D vectors
with 0 in the fourth coordinate. So far, so good.

(a) (b)

Figure 3.1: (a) The startup scene of Blender: a cube centered at the origin in
world coordinates. (b) The same cube but scaled, rotated, and translated.

Unfortunately, there are two basic interpretations of transformations:
the “active interpretation” and the “passive interpretation.” In the active
interpretation, points are transformed from one position to another posi-
tion in the same coordinate system. In the passive interpretation, points
stay in the same position but their coordinate representation is transformed
from one coordinate system to another coordinate system (i.e. a “change of
basis” is performed). How could two such different operations be called two
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interpretations of the same transformation? Simply because the equation of
the two transformations (and therefore the implementation in a computer
program) is exactly the same for both interpretations. In practice, how-
ever, it is often easier to think in terms of one of the two interpretations.
In particular, when reading a text (or source code) that uses a certain in-
terpretation, it is a lot easier to think in terms of the same interpretation.
Thus, since both interpretations are commonly used, it is very useful to
understand both of them.

To this end, we will look at an example where both interpretations make
sense in order to see what exactly the difference is.

3.1 Active Interpretation

Consider the startup scene of the modeling tool Blender in Figure 3.1a: a
cubic mesh is centered at the origin of the world coordinate system. In
Figure 3.1b, however, the same mesh is scaled, rotated, and translated by
a 4× 4 transformation matrix, say M .

In the active interpretation, we can think of placing the vertices of the
cubic mesh into world coordinates in Figure 3.1a. Then the matrix M
actively transforms each vertex position (xw, yw, zw, 1) to a new position
(x′w, y

′
w, z

′
w, 1) as shown in Figure 3.1b. Both positions are specified in world

coordinates. The large arrows in Figure 3.1b just show how the points
(1, 0, 0, 1), (0, 1, 0, 1), and (0, 0, 1, 1) would be transformed (if there was no
scaling). We can write the transformation as:

x′w
y′w
z′w
1

 = M


xw
yw
zw
1

 (3.1)

I.e. the transformation is just a matrix-vector multiplication with M .

3.2 Passive Interpretation

The passive interpretation is quite different: We only look at Figure 3.1b
where the large arrows represent a local object coordinate system (apart
from the scaling). The vertices of the mesh are specified in this coordinate
system; for example, a vertex (0, 0, 0, 1) in this coordinate system would
appear at the intersection of the three large arrows in Figure 3.1b, i.e. at the
origin of the local coordinate system. The transformation matrix M doesn’t
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change those positions at all, it just allows us to compute the coordinate
representation of the passive vertices with respect to another coordinate
system, specifically the world coordinate system (which is represented by
the three large arrows in Figure 3.1a). Thus, given a vertex in object
coordinates (xo, yo, zo, 1), we can transform this coordinate representation
to world coordinates (xw, yw, zw, 1) with the transformation matrix M :

xw
yw
zw
1

 = M


xo
yo
zo
1

 (3.2)

Again, this is just a matrix-vector multiplication with M . The only differ-
ences to the previous equation are the names of the variables, which were
chosen to clarify the interpretation. If numbers are supplied, there is no
difference at all: the exact same computations are performed in both cases.

3.3 Real-World Usage

Which of the two interpretations is preferable? Unfortunately, there is
no clear answer to this question. In the case of “modeling transforma-
tions” (from object coordinates to world coordinates) both interpretations
are commonly used. In fact, even the source code of one and the same
application often uses an active interpretation in one part and a passive
interpretation of the very same modeling transformation in another part.
Thus, the choice of the interpretation doesn’t only depend on the specific
transformation and the personal preferences of a programmer or author but
also on the specific context in which the transformation is used.

For many other transformations (in particular the viewing transforma-
tion, the projection transformation, and the viewport transformation), the
passive interpretation is usually preferred when applying the transformation
matrix; however, the active interpretation is often preferred when comput-
ing the transformation matrix. Thus, readers (and authors) of source code
and/or publications in computer graphics not only have to understand both
interpretations but also have to be able to switch from one interpretation
to the other.

Further Reading

There is a discussion of “thinking about transformations” in Chapter 3 of
Dave Shreiner, OpenGL Programming Guide: The Official Guide to Learn-
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ing OpenGL R©, Versions 3.0 and 3.1, 7th ed., Addison-Wesley, 2010. The
section “Grand, Fixed Coordinate System” describes the active interpre-
tation while section “Moving a Local Coordinate System” describes the
passive interpretation of combined modeling transformations.

The Wikipedia page “Active and Passive Transformation” (as of Octo-
ber 25, 2012) discusses a 2D rotation as an active and as a passive trans-
formation. In the case of the passive transformation, the Wikipedia article
transforms the coordinate representation of a point from a fixed coordi-
nate system to the transformed coordinate system while the example in
Figure 3.1 transformed the coordinate representation of points from the
transformed coordinate system to a fixed coordinate system. That is why
the Wikipedia article requires the inverse transformation in the case of the
passive transformation.

The screen shots were produced with the “Blender 3d content creation
suite” by the Blender Foundation, see http://www.blender.org.
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Transformations of Special Vectors in Computer

Graphics

Keywords: Computer graphics, transformation, normal.

Transforming points and directions is an important part of 3D computer
graphics. In fact, the whole process of rendering a polygonal mesh onto
a screen is often described as a sequence of coordinate transformations.
Most transformations are affine transformations; i.e., they consist of a linear
transformation, which can be represented by a 3 × 3 matrix, say A, and a
translation by a vector, say v. A 3D point p is then transformed this way:

p′ = Ap + v (4.1)

This transformation can be used, for example, to describe the positions
and orientations of rigid bodies such as depicted in Figure 4.1. Apart from
points, there are, however, additional kinds of vectors that have to be trans-
formed, e.g. the surface normal vectors, which are required for the correct
shading of surfaces.

4.1 Directions

Directions (or “vectors” that aren’t points) are usually not affected by trans-
lations. Consider the vector d from point p to point q with d = q− p. If
p is transformed to p′ = Ap + v and q is transformed to q′ = Aq + v then
the difference d′ of the transformed vectors is:

d′ = q′ − p′ = (Aq + v)− (Ap + v) = A(q− p) = Ad (4.2)

Thus, the difference d between two points is only affected by the linear
transformation but not by the translational part of an affine transforma-
tion. Similarly, all vectors that represent directions (e.g. light directions,
camera directions, velocities, accelerations, forces, etc.) are not affected by
translations.

25
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Figure 4.1: A rather simple rigid-body simulation. Image source:
http://commons.wikimedia.org/wiki/ File:Bullet Wall.png .

4.2 Cross Products

There are further vectors that behave differently. For example, a vector c
that is always defined as the cross product of two directions a and b will
usually not transform like a regular direction since in general we have:

c′ = a′ × b′ = Aa× Ab 6= A(a× b) = Ac (4.3)

In order to compute the transformed vector c′, it is therefore usually best
to transform the vectors a and b and compute the cross product of the
transformed vectors a′ and b′.

4.3 Surface Normal Vectors

Surface normal vectors are another class of vectors that transform differ-
ently. A surface normal vector n at a point on a surface is defined to be
always orthogonal (or perpendicular) to the surface at that point, which
also means that it is orthogonal to any tangential direction t at that point;
see Figure 4.2a. However, a linear transformation M (in particular a shear
transformation) doesn’t in general preserve the angles between any two vec-
tors (e.g. a and b in Figure 4.2b); thus, two vectors that are orthogonal
might become non-orthogonal vectors if they are linearly transformed like
directions. Thus, surface normal vectors cannot be transformed like di-
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rections since they have to be orthogonal to tangential vectors, which are
transformed like directions.

t

n

(a) x

y

a

b

x

y

a'

b'M

(b)

Figure 4.2: (a) Surface normal vector n at a point of a surface (here: a
curve) orthogonal to tangent vector t. (b) After a linear shear transforma-
tion M , the vectors a and b are no longer orthogonal.

Thus, the question is: which transformation of surface normal vectors
would guarantee that the transformed normal vector is orthogonal to a
transformed tangent vector?

In order to answer the question, we first make the assumption that for
every “reasonable” transformation matrix M that is used to transform a
tangent vector t, there exists a linear transformation matrix Q such that
the transformed normal vector n′ = Qn is orthogonal to the transformed
tangent vector t′ = Mt iff (i.e. if and only if) n is orthogonal to t. Two
vectors (unequal to 0) are orthgonal iff their dot product is equal to 0.
Thus, we can write a stronger requirement this way:

n′ · t′ !
= n · t (4.4)

If n′ and t′ are orthogonal then the left-hand-side is 0; thus, the right-hand-
side has to be 0, and, therefore, n and t have to be orthogonal. Analogously
for the case that they are not orthogonal.

From this equation it is straightforward (but slightly cumbersome) to
compute Q:

n′ · t′ = n′T t′ (4.5)

= (Qn)T (Mt) (4.6)

= nTQTMt (4.7)
!

= nT t = n · t (4.8)
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We can easily fulfill the requirement nTQTMt
!

= nT t with this requirement:

QTM
!

= Id (Id is the identity matrix) (4.9)

QT !
= M−1 (4.10)

Q
!

= (M−1)T (4.11)

Thus, if (M−1)T exists, i.e. if M is invertible (which is the “reasonable”
requirement mentioned above) then surface normal vectors are transformed
with Q = (M−1)T ; i.e., the transformed surface normal vector n′ is:

n′ = (M−1)Tn (4.12)

In other words, surface normal vectors are transformed with the transpose
of the inverse of the regular transformation matrix.

There is one special case: if M is orthogonal, i.e. M−1 = MT , then
Q = (M−1)T = (MT )T = M . Thus, in the special case of an orthgonal
transformation matrix M , surface normal vectors are transformed with M
like regular direction vectors.

Further Reading

The transformation of surface normal vectors is also discussed in Section
4.3.7 of James M. Van Verth and Lars M. Bishop, Essential Mathematics
for Games and Interactive Applications — A Programmer’s Guide, 2nd ed.,
Morgan Kaufmann Publishers, 2008.
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Viewing Transformation in Computer Graphics

Keywords: Computer graphics, viewing transformation, view transfor-
mation, camera.

In computer graphics, a virtual camera is usually employed to produce
an image of a virtual 3D scene; see Figure 5.1a. Like a real camera, the
virtual camera has a position and an orientation, as well as other properties
that are not taken into account here, e.g. a field of view, an aspect ratio,
a focal length, etc. Different rendering techniques use the position and
orientation of a virtual camera in different ways; here, we will look at the
standard procedure for perspective cameras in the real-time rendering li-
brary OpenGL. (Other real-time rendering libraries, in particular Direct3D,
work similarly.)

(a)

(b)

Figure 5.1: (a) The startup scene of Blender with a representation of the
camera’s view frustum in black on the left-hand side. The view frustum is
the volume that is visible to the camera. The frustum’s top is at the camera
position; the frustum points in the view direction; and the “up” direction
is indicated by the solid black triangle. (b) The view frustum of a camera
in view/eye coordinates.
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5.1 View Coordinates

In OpenGL, vectors are transformed from the common world coordinate
system to “view coordinates” (also known as “eye coordinates”). While
world coordinates don’t depend on the virtual camera, the view coordinate
system is defined by the position and orientation of the virtual camera.
Specifically, the origin of the view coordinate system is placed at the posi-
tion of the camera (called t in the following); the negative z axis of the view
coordinate system points to the view direction (called d below); and the
positive y axis points “up” (as close to a world-up direction k as possible).
See Figure 5.1b for an illustration of the view frustum in view coordinates.

When rendering a scene, all points are (passively) transformed from
world coordinates to view coordinates. This transformation depends on
the virtual camera. Once in view coordinates, however, there is no more
dependency on the position and orientation of the camera, and the rendering
can proceed in the same way for all positions and orientations of the camera.

5.2 Computing the Viewing

Transformation

In order to apply a viewing transformation, we have to compute the corre-
sponding matrix. Here, we will denote the viewing transformation matrix
from world coordinates to view coordinates as Mworld→view and the inverse
matrix from view coordinates to world coordinates as Mview→world.

Conceptually, it is easier to first compute the transformation matrix
from view coordinates to world coordinates Mview→world in an active inter-
pretation. The origin in view coordinates [0 0 0 1]T (with a 4th coordinates
of 1 because it is a point) has to be translated to the position of the camera
in world coordinates, say t = [t1 t2 t3 0]T . This will become the translation
part of Mview→world.

For the linear part of Mview→world, we first consider the positive(!) z axis
of the view coordinate system (more precisely, the vector [0 0 1 0]T ), which
has to be mapped to the negative(!) view direction. Let’s assume the view
direction is given in world coordinates by an unnormalized vector d, then
the “image” z (in the mathematical sense) of the positive z axis (i.e. of the
vector [0 0 1 0]T ) is:

z = − d

‖d‖
(5.1)

Second, the image x (in world coordinates) of the positive x axis of the view
coordinate system (i.e. of the vector [1 0 0 0]T ) has to be orthogonal to z
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and to a world-up direction k (also in world coordinates) because x should
point to the right (not up). These requirements can be easily fulfilled with
a normalized cross product:

x =
d× k

‖d× k‖
(5.2)

Thirdly, the image y of the y axis of the view coordinate system (i.e. of the
vector [0 1 0 0]T ) has to be orthogonal to z and x. Since the latter two
vectors are already normalized and orthogonal, a simple cross product is
sufficient to compute y:

y = z× x (5.3)

From the three images x = [x1 x2 x3 0]T , y = [y1 y2 y3 0]T , and z =
[z1 z2 z3 0]T (in world coordinates) of the vectors [1 0 0 0]T , [0 1 0 0]T , and
[0 0 1 0]T (in view coordinates), and the translation vector t = [t1 t2 t3 0]T

(also in world coordinates), the matrix Mview→world for the transformation
from view coordinates to world coordinates can be easily constructed by
using the vectors x, y, z, and t as column vectors:

Mview→world =


x1 y1 z1 t1
x2 y2 z2 t2
x3 y3 z3 t3
0 0 0 1

 (5.4)

Since the vectors x, y, and z are normalized and orthogonal to each other,
the upper-left 3×3 part, say R, of this matrix is orthogonal, i.e. R−1 = RT .
The matrix Mview→world can then be written this way:

Mview→world =

[
R t
0T 1

]
with R =

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 (5.5)

It turns out that the inverse of a matrix of this form is given by:

M−1
view→world =

[
R−1 −R−1t
0T 1

]
(5.6)

Since R is orthogonal; i.e., R−1 = RT , this is just:

M−1
view→world =

[
RT −RT t
0T 1

]
(5.7)

Thus, M−1
view→world is easy to compute using x, y, z, and t. Furthermore,

the viewing transformation matrix Mworld→view is equal to M−1
view→world:

Mworld→view = M−1
view→world =

[
RT −RT t
0T 1

]
(5.8)
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Thus, this matrix is the correct viewing transformation matrix to transform
points from world coordinates to view coordinates.

Further Reading

The computation is also described in Section 6.2 of James M. Van Verth and
Lars M. Bishop, Essential Mathematics for Games and Interactive Appli-
cations — A Programmer’s Guide, 2nd ed., Morgan Kaufmann Publishers,
2008.

The presented algorithm assumes that the view direction always points
to the center of the view plane. In the more general case of an arbitrary
position of the view point and the view plane, the computation is somewhat
more difficult. In particular, the “view direction” d is then just the direction
that is orthogonal to the view plane (regardless of the direction into which
the camera is pointing); see Robert Kooima’s publication “Generalized Per-
spective Projection” (available at: http://csc.lsu.edu/~kooima/pdfs/

gen-perspective.pdf) for details.
The screen shot was produced with the “Blender 3d content creation

suite” by the Blender Foundation, see http://www.blender.org.



Chapter 6

Encoding High Dynamic Range Images

Keywords: Dynamic range, image processing, color transformation, log-
arithm, exponential.

The human visual system can adjust itself to environments of a very
large range of light intensities. Traditionally, cameras and displays were
able to capture and reproduce only a fraction of this intensity range at a
time; thus, image formats were designed for these images of limited inten-
sity range. High Dynamic Range (HDR) images, however, require a larger
range of intensities; thus, traditional image formats are not sufficient and
new HDR image formats had to be defined. One of them is the “HDR”
format (a.k.a. “Radiance” picture format). One of the encodings of the
HDR format is the RGBE encoding, which is discussed here as an example
for an application of exponential and logarithmic functions.

6.1 RGBE Encoding

This encoding uses 4 bytes (or 32 bits) for each pixel: one byte for the red
component (R), one for green (G), one for blue (B), and one byte for a
common exponential (E).

Given an original RGB color with components Rorg, Gorg, and Borg be-
tween approximately 10−38 and 10+38, the encoded bytes R, G, B, and E
between 0 and 255 are computed this way:

E = ceiling (log2 (max (Rorg, Gorg, Borg)) + 128) (6.1)

R = floor

(
256Rorg

2E − 128

)
(6.2)

G = floor

(
256Gorg

2E − 128

)
(6.3)

B = floor

(
256Borg

2E − 128

)
(6.4)

where floor(x) is the largest integer that is smaller than or equal to x, and
ceiling(x) is the smallest integer greater than or equal to x.
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Figure 6.1: Example of an HDR image, which was rendered with
a particular algorithm (i.e. some form of tone mapping) to show a
large range of color intensities in the same image. Image source:
http://commons.wikimedia.org/wiki/File:Igreja Nossa Senhora de Fatima
(Tone Mapped).jpg

The computation of E uses the log2 function, which changes very slowly
for large values x. This makes it possible to encode a large range of values
in just one byte.

6.2 Decoding RGBE

Given the 4 bytes R, G, B, and E between 0 and 255, an approximation to
the original color components Rorg, Gorg, and Borg between approximately
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10−38 and 10+38 can be decoded this way:

Rorg ≈
R + 0.5

256
2E−128 (6.5)

Gorg ≈
G+ 0.5

256
2E−128 (6.6)

Borg ≈
B + 0.5

256
2E−128 (6.7)

Here, the exponential function changes rapidly for positive arguments,
which makes it possible to generate a large range of values even though E
has only 256 potential values.

6.3 Example

In order to illustrate the RGBE encoding with an actual example, Figure 6.2
shows how the (non-HDR) image in Figure 6.2a would be encoded in R,
G, and B components, which are depicted in Figure 6.2b, and E, which is
shown as grayscale image in Figure 6.2c. E is always rather close to 128

(a) (b) (c)

Figure 6.2: (a) Original image (http://commons.wikimedia.org/wiki/File:
FuBK-Testbild.png). (b) Encoded R, G, and B components. (c) Encoded
E component as grayscale image.

(i.e. gray) except for pure black. Note in particular the color gradients in
the lower, left part of the image: almost all of the colors are encoded with
only 7 (out of 256) values of E.

Further Reading

The book “High Dynamic Range Imaging” (2nd ed., Morgan Kaufmann,
2010) by Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pat-
tanaik, Greg Ward, and Karol Myszkowski discusses many aspects of HDR
imaging, including the HDR format in Section 3.3.1.
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Motion of a Particle under Forces

Keywords: Simulation, physics, mechanics, calculus, velocity, accelera-
tion, force.

The computer simulation of the motion of objects under forces has nu-
merous applications: from highly accurate simulations in ballistics to the
inaccurate motion of balls, projectiles, or angry birds in computer games.
Even some elements of graphical user interfaces move based on a simulation
of spring forces. Here, we consider the basic case of a point-like particle with
no volume but some mass that moves under a known force, for example,
gravity. Other forces, e.g. collision forces, could also be integrated pro-
vided that they can be computed. Point-like particles are often a useful
approximation for projectiles, e.g. in computer games.

Figure 7.1: Example of a “projectile.” If the rotation of the ball is ignored,
its motion can be approximately computed with the model of a point-like
particle. Collision detection, however, should still take the volume of the
ball into account. Source: http://commons.wikimedia.org/wiki/File:2011-
06-07 Basketball in hoop still shot.jpg
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7.1 Equation of Motion and Force

The basic equation for the computation of some motion is usually called
the “equation of motion.” In the case of a particle of mass m (usually
in kilogram: kg) under force F (usually in Newton: 1N = 1kg m s−2), the
equation of motion is:

a = m−1F (7.1)

This equation specifies the acceleration a (in meter per second squared:
m s−2) as a function of mass and force. The equation is also known as
Newton’s second law, which is usually written in this equivalent form: F =
ma. In three dimensions, it is vector equation, i.e. it is actually a system
of three equations:

ax = m−1Fx (7.2)

ay = m−1Fy (7.3)

az = m−1Fz (7.4)

with [ax ay az]
T = a and [Fx Fy Fz]

T = F.

The gravity force on the surface of the Earth is a good example. If
the y axis is pointing upwards, the gravity force is approximately: Fgrav =

m
[
0 − 9.81 m

s2
0
]T

. Note that m (in italics) denotes the mass while m (not
in italics) is the symbol for meter. Also note that not all forces are that
simple, and in many cases the computation of forces is more costly than the
rest of the simulation. Here, however, we won’t discuss any other specifc
forces.

If multiple forces act on the same particle (e.g. gravity force, aerody-
namic drag force, repulsive collision force, electromagnetic Lorentz force,
etc.), all the force vectors have to be added and the total sum of the forces
is used in the equation of motion.

7.2 Definition of Acceleration and

Computation of Velocity

With the equation of motion, we can compute the acceleration a of a particle
of mass m under a (total) force F. The acceleration specifies the change of
velocity ∆v per time ∆t for infinitely small time intervals:

a = lim
∆t→0

∆v

∆t
(7.5)
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Again, this is actually a system of three equations since a and ∆v are
vectors.

If the velocity v(t′) of the particle is described as a function of time t′

then the acceleration a(t) at t can be written as the time derivative of v(t′)
with respect to t′ at t′ = t:

a(t) =
dv(t′)

dt′

∣∣∣∣
t′=t

(7.6)

As before, this is actually a system of three equations with three time
derivatives. The equation is often written in a more compact form:

a(t) =
dv(t)

dt
or even a =

dv

dt
(7.7)

This definition of the acceleration can be used to compute the particle
velocity from the acceleration by “integrating” the equation:

a(t) =
dv(t′)

dt′

∣∣∣∣
t′=t

⇒ v(t) = v(t0) +

∫ t

t0

a(t′)dt′ (7.8)

The integral equation is actually three integral equations: one for each
coordinate. We will not worry whether these integrals exist since we know
that the physical motion exists. Note, however, that an integration constant
v(t0) had to be introduced, which cannot be determined by the equation
of motion. Here, v(t0) is just the velocity at some time t0, which has to be
known. In the language of differential equations, this is the initial condition.

7.3 Definition of Velocity and Computation

of Position

So far, we can compute the velocity of a particle from its acceleration, which
we can compute from its mass and the force on the particle. A computer
simulation will, however, usually require the computation of the position
of the particle. To this end, we “integrate” the velocity once more. From
a formal, mathematical point of view, this is completely analogous to the
previous integration of the acceleration. However, the physical meaning is
different.

Velocity is defined as the change of the position vector ∆r per time ∆t
for infinitely small time intervals:

v = lim
∆t→0

∆r

∆t
(7.9)
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Again, we can write this as a derivative of the time-dependent position r(t)
(or three derivatives of the three coordinates of r(t)):

v(t) =
dr(t′)

dt′

∣∣∣∣
t′=t

(7.10)

This equation is integrated with the initial position r(t0) at t0 to yield:

r(t) = r(t0) +

∫ t

t0

v(t′)dt′ (7.11)

In this way, we can compute the position r(t) of the particle for any time
t based on the initial position r(t0), the initial velocity v(t0), the particle’s
mass m, and the (possibly time-dependent) force F(t).

There are, however, some serious potential problems. While the men-
tioned approximation to the gravity force could be easily integrated ana-
lytically (this is left as an exercise for the reader), most forces on particles
actually depend on the velocity or the position of the particle. For example,
the force of a spring between two particles usually depends on the distance
between the two particles and therefore on their positions. However, it is
the position that we want to compute from the force; thus, we cannot use
the (unknown) position to compute the force. Fortunately, the situation is
not quite as bad in the case of a numerical integration.

7.4 Outlook: Discrete Numerical

Integration

In a numerical simulation, time t is usually discretized into discrete times
ti with i = 0, 1, 2, 3, . . . and all time-dependent variables are only computed
at those times: ri = r(ti), vi = v(ti), ai = a(ti), and Fi = F(ti). The idea
of the discrete integration is to start with the known initial values for t0
and then to compute the values for t1 based on these initial values. In the
next step, the values for t2 are computed based on the previous values and
so on. In general, we want to compute the values for ti+1 from the values
for ti (and possibly ti−1, ti−2, . . . , t0).

One of the most basic discrete integration methods is called explicit
Euler integration. For this method, the computation for time ti+1 based on
the values for ti would be:

ai = m−1Fi (7.12)

vi+1 = vi + ai∆t (7.13)

ri+1 = ri + vi∆t (7.14)
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where ∆t = ti+1− ti is the length of the time step. Here, Fi can depend on
ri and vi without causing any trouble. However, explicit Euler integration
is not very precise. Actually, it is a rather poor choice for an integration
method; thus, many better techniques have been suggested, e.g., Runge-
Kutta methods.

Further Reading

A more detailed introduction is provided in Chapter 13 of James M. Van
Verth and Lars M. Bishop, Essential Mathematics for Games and Interac-
tive Applications — A Programmer’s Guide, 2nd ed., Morgan Kaufmann
Publishers, 2008.

More details are given in Chapter 22 of Kenny Erleben, Jon Sporring,
Knud Henriksen, and Henrik Dohlmann, Physics-Based Animation, Charles
River Media, 2005.





Chapter 8

Face Recognition using Principal Component

Analysis

Keywords: Eigenvalues, eigenvectors, face recognition.

Principal Component Analysis (PCA) is a well-known technique in lin-
ear algebra for mapping high-dimensional observations of possibly corre-
lated variables to a lower dimensional space in which the variables are lin-
early uncorrelated. Since the second space is of lower dimension compared
to the original space, there will be some loss of information during this pro-
cess. PCA finds the basis of the new space such that this loss is minimal.
The basis vectors of the new space are known as principal components and
they are usually found by eigenvalue decomposition. In the following sub-
section eigenvalue decomposition is explained for a small matrix, and then it
will be used for the PCA in a real-world example, namely face recognition.

8.1 Eigenvalue Decomposition

For a square matrix A, an eigenvector ~x is a vector unequal to ~0 with:

A~x = λ~x (8.1)

where λ is a real or complex number and is called the eigenvalue of A
associated with its eigenvector ~x . The eigenvalues of A can be calculated
by:

det (A− λId) = 0 (8.2)

where det is the determinant function and Id is the identity matrix. To
do the eigenvalue decomposition, the eigenvalues of a given matrix are first
found using Eq. 8.2. Then each of the computed eigenvalues is substituted
into Eq. 8.1 to find its associated eigenvector.
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Let’s assume that, for example, A =

[
1 2
2 1

]
which means that the eigen-

vectors will be of the form ~x =

[
x1

x2

]
. Using Eq. 8.2, we have:

det

([
1 2
2 1

]
−
[
λ 0
0 λ

])
= 0 (8.3)

This can be simplified to (1− λ)2 − 4 = 0 which results in λ1 = 3 and
λ2 = −1. Substituting λ1 into Eq. 8.1 results in the following system of
equations: {

−2x1 + 2x2 = 0
2x1 − 2x2 = 0

Setting x1 = t, it is obvious that x2 = t. This means that the correspond-
ing eigenvector of the largest eigenvalue, λ1 = 3, is: [1 1]T . (Note that the
scaling of eigenvectors is arbitrary.) Repeating the process for the second
eigenvalue, λ2 = −1, the following eigenvector will be obtained: [1 − 1]T .
These perpendicular eigenvectors are the basis vectors of a new space, usu-
ally called eigenspace. Now let’s see how projections to eigenspaces can be
used in practical problems.

8.2 Face Recognition

In this section, we show how an eigenvalue decomposition can be used for
a PCA in the context of face recognition. This has been first reported in
[1] which provides further details about the algorithm.

To use PCA for face recognition, we obviously need a database of facial
images. Here, we use the ORL Face Database for this purpose [2]. Some
of the facial images of this database are shown in Figure 8.1. There should
be more than one sample image per person in the database. Some of the
samples of each person will be used for training and the rest for testing the
trained system.

The first step in using PCA for face recognition is reshaping the two-
dimensional matrix of facial images into one-dimensional vectors and com-
bining them into a large matrix. The number of rows of this large matrix is
equal to the number of the pixels of the images (they are assumed to be of
the same size) and the number of its columns is equal to the number of the
images. Let’s say the employed database contains M training images as Γ1,
Γ2, ..., ΓM , each of size N ×N . Having reshaped these images into vectors
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Figure 8.1: Some of the face images of the ORL Face Database [2].

of size N2×1, then a so-called mean face is calculated as: Ψ = 1
M

∑M
n=1 Γn.

This mean face which is shown in Figure 8.2 will then be subtracted from
each face sample for the normalization purposes as: Φi = Γi −Ψ, where Φi

is the normalized face image.

Figure 8.2: The mean face image of the employed database

The set of all of these normalized vectors is then combined in a matrix
as A = [Φ1 Φ2 ... ΦM ] of size N2 ×M to which the PCA technique will
be applied. To this end, the eigenvalues and eigenvectors of the following
covariance matrix need to be calculated:

C =
M∑
n=1

ΦnΦT
n = AAT (8.4)

Since this matrix is of a very large size, N2 × N2, obtaining its eigenval-
ues is not easy. However, it can be shown (see [1] for details) that the
eigenvectors of AAT are the same as those for L = ATA which is of the
significantly smaller size M×M . The M eigenvectors of this matrix, which
can be obtained using the method described in the previous section, are the
basis vectors of the eigenspace. This means that every face image can be
expressed as a linear combination of these basis vectors. The 18 eigenfaces
corresponding to the 18 largest eigenvalues of matrix L for the employed
database are shown in Figure 8.3.
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Figure 8.3: Some of the eigenfaces of the employed database.

These 18 eigenfaces form the basis of a new, 18-dimensional space. Every
face image can be approximated as a linear combination of these basis
vectors. For the recognition purpose, every image of the database is mapped
in this way to the new space using these basis vectors. Doing so results in a
weighting vector for each face image where the elements of the vector reveal
the influence of the corresponding eigenface for mapping that face.

Having an input test image, it will first be projected to the eigenspace
and the weights of each of the eigenfaces for doing this projection will be
calculated. Then the result of the recognition will be a face image which
has the closest weight vector to the weight vector of the test image. To
measure the closeness, distance metrics like simple Euclidean distance can
be used.

8.3 References

[1] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces.
Proceedings of IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pp. 586-591.

[2] ORL Face Database, available at: http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html, accessed: 27, Nov., 2012.



Chapter 9

Recognizing words: Finite automata

Keywords: Automata.

In this chapter we describe an application of ideas from set theory and
graph theory to algorithms for recognizing which words are valid. The
notion of finite automaton originally arose in the study of neural networks;
its fundamental theory is due to Kleene [2], Rabin and Scott [3].

Finite automata can be seen as very simple algorithms for testing if a
given word belongs to some set of words.

Two very important applications of finite automata are

• Their use in text editors; one can define a search pattern by means of
a regular expression (these are defined later in this text) and by means
of an algorithm extract a finite automaton that will accept precisely
the set of words that match the search pattern, and

• Their use in compilers for programming languages; the compiler will
as one of its first steps perform a so-called lexical analysis that will
check if the program identifiers, reserved words and numerical con-
stants follow the syntax of the programming language. This check is
performed by a finite automaton.

9.1 Letters, words and languages

First we need to fix the terminology. An alphabet is a finite set of letters. A
word over Σ is a finite sequence of letters from the alphabet Σ. The empty
word is the sequence of letters that has length 0; it is denoted by ε. Note
that we do not ascribe any meaning to words; a word can be any sequence
of characters from any given alphabet.

The concatenation of two words w1 and w2 is the word formed by the
letters of w1 followed by the letters of w2 and is denoted by w1w2.

A language is a set of words; this set may be finite or infinite. Again, note
that we do not ascribe any structural demands on languages; a language is
just a set whose elements are words (in the sense just defined).
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9.2 Finite automata

A finite automaton is a 5-tuple A = (Q,Σ, q0,→, F ) with the following
properties:

• (Q,→) is a directed graph.

• The edges in the set of edges → are labelled with elements from Σ.
We write u

a−→ v if there is an edge from u to v labelled a. We call an
edge a transition. We allow loops, i.e. transitions u

a−→ u.

• The vertices in Q are called states and satisfy the following condition:

For every u ∈ Q and a ∈ Σ there is exactly one v ∈ Q such that u
a−→ v

• q0 ∈ Q is a designated state called the start state.

• We have F ⊆ Q, and F is called the set of final states.

We can think of a finite automaton as a flow diagram for reading a word.
We start in the finite state and follow the transitions of the graph labelled
with the letters of the word.

Let w = a1 . . . ak be a word over the alphabet Σ. A computation for a
finite automaton is a sequence of edges

q0
a1−→ q1 · · · qk−1

ak−→ qk

We sometimes write this as simply q0
w−→ qk.

If qk ∈ F we say that the computation is accepting and we say that M
accepts w.

A language is called a regular language if there exists a finite automaton
such that L = {w |M accepts w}. We say that M recognizes L.

9.3 Closure under set operations

The class of regular languages is closed under the set operations of union,
intersection and set difference. By this we mean that

Theorem 1. If L1 and L2 are regular languages over the same alphabet Σ,
then

1. L1 ∪ L2 is a regular language.

2. L1 ∩ L2 is a regular language.
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3. L1 \ L2 is a regular language.

The proof of this theorem proceeds as follows.

Suppose L1 is a regular language. Then there exists a finite automaton
M1 = (Q1,Σ, q01,→1, F1) that recognizes L1. Similarly, there exists a finite
automaton M2 = (Q2,Σ, q02,→2, F2) that recognizes L1.

In all three cases, we define a new finite automaton M12 = (Q12,Σ, q0,→
, F ) where the states are given by

Q
def
= Q1 ×Q2 = {(q′, q′′) | q′ ∈ Q1, q

′′ ∈ Q2}

q0
def
= (q01, q02)

The idea behind this construction is the new automaton describes what
would happen if M1 and M2 were run at the same time. The idea is that
a state (q′, q′′) represents the joint state of the two original automata. This
automaton is called the product automaton of M1 and M2.

Therefore the transitions are given by

(q′, q′′)
a−→ (q′1, q

′′
2) if q′

a−→1 q
′
1 and q′′

a−→2 q
′′
2

If we want the product automaton to recognize L1 ∪ L2, we let

F = {(q′, q′′) | q′ ∈ F1 or q′′ ∈ F2}

If we want the product automaton to recognize L1 ∩ L2, we let

F = {(q′, q′′) | q′ ∈ F1 and q′′ ∈ F2}

And finally, if we want the product automaton to recognize L1 \ L2, we let

F = {(q′, q′′) | q′ ∈ F1 and q′′ 6∈ F2}

The proof that the construction that we have just described is a proof
of the fact that

(q′, q′′)
w−→ (q′1, q

′′
2) iff we have q′

w−→1 q
′
1 and q′′

w−→2 q
′′
2

for every word w. This proof proceeds by induction in the length of w.
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Example 1.

q0 q1

q2

a

a, b

b

a, b

Figure 9.1: A finite automaton recognizing the language L1

9.4 Concatenation, Kleene closure and

regular expressions

We can define two further operations on finite automata, namely concate-
nation and Kleene closure. They are

Definition 1 (Concatenation of languages). Let L1 and L2 be languages.
Then the concatenation of L1 and L2 is the language

L1 ◦ L2 = {uv | u ∈ L1, v ∈ L2}

Definition 2 (Kleene closure). Let L be a language. Then the Kleene
closure of L is the language

L∗ = {w1 . . . wn | n ≥ 0, wi ∈ L for all i ≤ n}

Since we in the definition of L∗ allow for words formed by 0 strings from
L, the empty word ε will always be a member of L∗.

An automaton which recognizes L1 is depicted in Figure 9.1. We fol-
low the convention of denoting accept states with a double circle and by
depicting transitions with different labels by a single edge.



9.5. References 51

Note that there may be several different automata that recognize the
same language. An important result due to Myhill and Nerode [1] is that
there always exists a minimal automaton recognizing a given regular lan-
guage and that this automaton can be found by means of an algorithm.

The proof that the class of regular languages is also closed under these
operators mentioned here goes beyond the scope of this short note, but
taken together, the regular operations of concatenation, Kleene closure and
union are enough to specify precisely the class of regular languages [2, 3].

A set expression that only uses the regular operations is called a regular
expression.

In fact the proof that regular expressions capture precisely the class of
regular languages is constructive: there is an algorithm that, given any finite
automaton can build the regular expression of the language that it recog-
nizes. Conversely, there is an algorithm that, given any regular expression
defining a language can build the finite automaton recognizing it.

Example 2. Suppose our alphabet Σ = {a, b}. The language L of all
words that either begin with a or ends with two b’s is given by the regular
expression

L = {a} ◦ {a, b}∗ ∪ {a, b}∗ ◦ {bb}
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Chapter 10

Error-collecting cødes 7→ Error-correcting codes

Keywords: Error-correcting codes, noisy channel, digital data transmis-
sion.

Digital data transmission is vulnerable to errors and erasures. This may
happen when a picture is send from the surface of Mars to the Earth, when
broadcasting TV or radio, when reading information on a CD-ROM etc.
The solution to the problem is to add some redundancy to the message.
This should be understood in the information theoretic way: Rather than
sending a message vector ~m of lenght k a corresponding codeword ~c of
length n, with k < n, is being send. The digits of ~m need NOT appear in
~c.

The theory of error-correcting codes was born with the pioneering work
of Shannon during the second world war. Today it is an important part of
most digital communication. As an example QR-codes use error-correcting
codes.
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10.1 The repetition code

A file is a sequence of 0’s and 1’s. The most naive approach to protect a
data transmission would be to send every symbol three times: Instead of
sending 0 we send 000 and instead of 1 we send 111. The corresponding
code is called the repetition code of obvious reasons. Until the publication
of Shannon’s work in 1948 it was the common belief that this was the only
way to protect digital data from noise. Note that the repetition code is
expensive in use, the ratio of information symbols pr. send symbol (called
the information rate) being only 1/3. As a preparation to describe better
codes we start by describing the repetition code in the language of error-
correcting codes.

In most Linear Algebra courses the scalars are either real numbers or
complex numbers. In mathematical language this amounts to saying that
the field is R or C. In digital communication the field is often of finite
size, the most simple case being the binary field F2 = {0, 1}. The rules for
addition and multiplication in F2 are as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Most results from the Linear Algebra course (but not all) hold when replac-
ing R (or C) with F2 or any other finite field. In a similar way as Rn means
the vectorspace

{[ c1 c2 · · · cn ]T | c1, c2, . . . , cn ∈ R}

by Fn
2 we shall mean the vectorspace

{[ c1 c2 · · · cn ]T | c1, c2, . . . , cn ∈ F2}.

For the case of the repetition code the messages are either 0 or 1. We identify
these with vectors of length 1, namely [0] and [1]. The corresponding code
words are [ 0 0 0 ]T and [ 1 1 1 ]T . We see that the encoding of a
message can be thought of as using the linear transformation T : F1

2 → F3
2,

T (~m) = G~m, where

G =

 1
1
1


is called a generator matrix.
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10.2 The [7, 4, 3] binary Hamming code

We next describe the [7, 4, 3] binary Hamming code. When using this code
we transform messages of length 4 to code words of length 7. Hence, the
information rate is 4/7. As we shall demonstrate we will be able to correct
one error in each code word.

Consider the binary matrices

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 0 1 1
1 1 0 1



H =

 1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .
A message ~m ∈ F4

2 is encoded to a code word ~c by ~c = T (~m) = G~m. Again,
of course T is a linear transformation and G is called a generator matrix.
The above encoding rule means that the collection of code words (called
the code) is the column space of G. One can check that the columns of
G are linearly independent (over F2). Hence, a code word can uniquely
be identified with a message (we have a bijective map). Actually, for the
[7, 4, 3] binary Hamming code ~m is found as the first four entries of the
corresponding code word ~c.

Using standard techniques from linear algebra one can check that ColG
is the same as NulH. This amounts to observing that both G and H are
of full rank and that HG = O holds (here O is the 3 × 4 zero matrix).
If the codeword is not changed when passing the information channel we
can check this at the receiving end by calculating H~c which should then
be [ 0 0 0 0 ]T (H is called the parity check matrix). We next consider
the case that exactly one error occurs. This means that exactly one of the
elements in ~c is changed from either 0 to 1 or vice versa. We can formalize
this by saying that ~r = ~c+ ~e is received where ~e is 0 in all positions except
in one where it is 1. For instance we may receive:

~r = [ 1 0 1 0 0 0 1 ]T+[ 0 1 0 0 0 0 0 ]T = [ 1 1 1 0 0 0 1 ]T .
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The decoding algorithm now relies on the very nice fact that

H~r = H(~c+ ~e) = H~c+H~e = ~0 +H~e = H~e.

Now if there is an error in position i meaning that the only non-zero element
of ~e is in position i. Then H~r = H~e will equal the ith column of H.
But all the columns of H are different which makes it possible to read of
the position of error from the matrix vector product H~r. Let us assume
~r = [ 1 1 1 0 0 0 1 ]T as above. At the receiving end we calculate

H~r = [ 1 0 1 ]T ,

which tells us that indeed there is an error in the second position. We then
recover the codeword simply by flipping the symbol in position two. Finally,
as the upper part of G is an identity matrix the first four elements of the
recovered word ~c is the message ~m.
In general the [7, 4, 3] code is capable of correcting one error but no more
than that. We will say that its error-correcting capability is 1.

10.3 The theory of error-correcting codes

Above we presented two of the simplest error-correcting codes. In general
a good error-correcting code must have a reasonable transmission rate and
be able to correct many errors. This involves that the code should be
structured in such a way that fast decoding algorithms can be designed.
Many deep results have been established since Shannon’s seminal work,
but many others are still awaiting their discovery.
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Chapter 11

Modular arithmetic and public-key cryptography

Keywords: Cryptography.

11.1 Cryptography

Cryptography is the practice and study of being able to communicate con-
fidential information securely, that is, in the presence of a potential adver-
saries. A cryptosystem consists of an encryption function E, a decryption
function D, a set of plaintexts P , a set of ciphertexts C, a set of encryption
keys Ke and a set of decryption keys Kd.

An instance of the cryptosystem chooses a specific encryption key and
a specific decryption key.

The encryption function takes as its arguments an encryption key ke ∈
Ke and a text t and produces a ciphertext E(ke, t). The decryption function
takes as its arguments a decryption key kd ∈ Kd and a ciphertext c and
produces a plaintext E(kd, c).

Historically, the first cryptosystems were symmetric cryptosystem. In
such cryptosystems we always choose the decryption key and the encryption
key to be the same in an instance of it. Let us call this key instance k.
Decryption and encryption are therefore inverses of each other, that is, we
have that

D(k, (E(k, t))) = t

The problem with this approach is that all users of an instance of a sym-
metric cryptosystem need to share the key and to keep it secret.

The idea of a asymmetric cryptosystem (also known as a public-key cryp-
tosystem) is much more recent. The idea dates back to Ellis (secret paper,
1970) but the first cryptosystem is due to Diffie and Hellman and from
1976. The first important system is due to Rivest, Shamir and Adleman
and from 1977; an equivalent system was invented by Cocks in 1973.

An asymmetric cryptosystem uses different keys for encryption and de-
cryption. Each user of the cryptosystem has their own pair of keys, K and
K−1. The encryption key K is made public, whereas K−1 is kept secret.
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We must have that

D(K−1, E(K, t)) = t for all t

The advantage of this approach is that any two users can exchange secret
messages without sharing a key pair – to send an encrypted message, each
party only needs to know the public encryption key of the other party.

Most asymmetric cryptosystems make use of modular aritmetic, which
we shall now introduce.

11.2 Modular arithmetic

We can define an equivalence relation on the natural numbers by

a ≡ b mod n

if a and b, where a, b, x ∈ N, have the same remainder under division by x.
That is, for some remainder r < n we have that a = d1n+r and b = d2n+r.
We say that a and b are equivalent modulo x.

It is not hard to prove that ≡ is an equivalence relation, i.e. that for
any n ∈ N, n > 0 it satisfies the axioms

a ≡ a mod n for all a ∈ N
a ≡ b mod n⇒ b ≡ a mod n for all a, b ∈ N

a ≡ b mod n ∧ b ≡ c mod n⇒ a ≡ c mod n for all a, b, c ∈ N

Moreover, the relation respects multiplication and addition, i.e. that for
any x ∈ N, x > 0 it satisfies the axioms

a ≡ b mod n⇒ a+m ≡ b+m mod n for all a, b,m ∈ N
a ≡ b mod n⇒ a ·m ≡ b ·m mod n for all a, b,m ∈ N

We can therefore think of ≡ mod n as defining a new kind of equality over
the natural numbers.

In the following we let Zn
def
= {a ∈ N | a < n} .

We can define the additive inverse −a in Zn as the number b ∈ Zn such
that a + b ≡ 0 mod n. This number is easily seen to be n − a. Likewise,
we can define the multiplicative inverse (if this inverse exists; it does not
always) a−1 mod n as the number b ∈ Zn such that ab ≡ 1 mod n.

One can show that if p is a prime number, then every n ∈ Zp will have
a multiplicative inverse mod p.

Example 3. Let n = 7. Then 4 is the additive inverse of 3 in Z7, since
3 + 4 ≡ 0 mod 7. And 5 = 3−1, since 3 · 5 ≡ 1 mod 7.
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11.3 Greatest common divisors and the

Euclidean algorithm

For any two natural numbersm and n their greatest common divisor gcd(m,n)
is the largest d ∈ N such that m = dx1 for some x1 and n = dx2 for some
x2. We say that m and n are relatively prime if gcd(m,n) = 1.

We now present a simple algorithm that can be used to find gcd(m,n)
and also to find the multiplicative inverse mod p for any number in Zp.
This algorithm was first presented in Euclid’s Elements and is therefore
known as the Euclidean algorithm.

Note that whenever m ≥ n, we have

gcd(m,n) = gcd(n,m mod n)

since m = kn+r where r < n and r = m mod n, and the greatest common
divisor has to divide both summands on the right. This can be used to give
an algorithm for finding the greatest common divisor.

gcd(a, b)

r0 ← a
r1 ← b
while rm 6= 0 do

qm ← b rm−1

rm
c

rm+1 ← rm−2 − qmrm
m← m+ 1

return rm−1

We can now show that gcd(m,n) can be written as a linear combination
of m and n. The algorithm produces a sequence of equations:

r0 = q1r1 + r2 (11.1)

r1 = q2r2 + r3 (11.2)

. . . (11.3)

rm−2 = qm−1rm−1 + rm (11.4)

rm−1 = qmrm (11.5)

We have r2 = r0 − q1r1. Apply this to (11.2) to get r3 = r1 − q2(r0 − q1r1).
Continuing in this fashion, we see that each ri can be written as a linear
combination of r0 and r1. We can find the coefficients as follows. Define
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tj’s and sj’s:

tj =


1 for j = 0

0 for j = 1

tj−2 + qj−1tj−1 otherwise

sj =


0 for j = 0

1 for j = 1

sj−2 + qj−1sj−1 otherwise

At each stage we have that rj = sjr0 + tjr1.
We can find a multiplicative inverse of a modulo m, if gcd(m, a) = 1.

But then we have 1 = smm+tma. Reducing this modulo m, we get 1 = tma,
so tm is the multiplicative inverse. This gives us an algorithm for finding
a−1.

11.4 One-way functions

For an asymmetric cryptosystem, the encryption function should be a ‘one-
way function’, i.e. it should be “ difficult” to compute t from E(K, t). A
more precise definition of what we mean by this requires knowledge of the
theory of computational complexity; this is beyond the scope of the present
text.

At present, no one-way functions are known to exist, but there are
several good candidates. One such candidate is modular exponentiation:

f(x) = xb mod n

The RSA cryptosystem (and many others) rely on this and situations (choices
of n) for which f−1 is also a modular exponentiation.

11.5 RSA

The RSA cryptosystem is named after Rivest, Shamir and Adleman.
Let p, q be primes and let n = pq. Let a, b which satisfy that ab ≡ 1

mod (p− 1)(q − 1). Then we can define a pair of keys (K,K−1) as follows.

The public key is K
def
= (n, b), the private key is K−1 def

= (a, p, q).
Encryption and decryption are defined as follows.

E(K, x) = xb mod n

D(K−1, y) = ya mod n
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One can now prove that for all x ∈ Zn we have D(K−1, (E(K, x))) ≡ x
mod n.

Here is how we create an instance of RSA:

1. Generate large primes p, q

2. Let n = pq. We let φ(n) = (p− 1)(q − 1).

3. Find a b such that gcd(b, φ(n)) = 1.

4. Find a = b−1 mod φ(n) using the extended Euclidean algorithm.





Chapter 12

McEliece Cryptosystem

Keywords: cryptography, error-correcting codes, McEliece cryptosys-
tem, quantum computer.

The emergence of quantum computers will imply that cryptosystems such
as RSA are no longer secure. Fortunately, the research community provides
other candidates. One of the most promising ones is the McEliece cryptosys-
tem. The McEliece cryptosystem is not yet used in practical application
due to the fact that its keys are much longer than the keys used in classical
systems such as RSA. The development of quantum computers most likely
would change that situation over night. The McEliece cryptosystem is a

public key system based on error-correcting codes (if you are not familiar
with this object you should read first the chapter “Error-collecting cødes
7→ Error-correcting codes”). Its security relies on the observation that de-
coding general linear code is NP-complete (meaning it is expected to be a
very difficult problem to solve). The idea in the cryptosystem is, given a
secret code C for which an efficient decoding algorithm is known to modify
it slightly to another code C ′ which appears impossible to decode unless
one knows the modifications made.

The McEliece cryptosystem is asymmetric. This means that there are
two sets of keys. The one set is public and the other set is private. Using
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the public key anybody can encrypt a message and send it to the owner
of the private key. Only he can then decrypt it. Observe that a third
party cannot decrypt the encrypted message even though the public key
is also known by him (the public key could be announced at a homepage
or similar). There are a vast number of error-correcting codes but so far
only very specific families of codes resist cryptoanalysis. The most secure
codes still seems to be the Goppa codes suggested by McEliece in the first
place. It is beyond the scope of this manuscript to treat Goppa codes. We
shall therefore explain the principle of the McEliece cryptosystem using a
much simpler code namely a binary Hamming code. This code along with
its decoding algorithm is described in the chapter “Error-collecting cødes
7→ Error-correcting codes”. If you are familiar with that chapter you can
skip the following section.

12.1 The [7, 4, 3] Hamming code

Consider the binary matrices

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 0 1 1
1 1 0 1



H =

 1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .
As we work in the binary field F2 = {0, 1} we have the rule 2 = 0. This
gives us

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0,
0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

The [7, 4, 3] binary Hamming code by definition equals Col G – the column
space of G. Hence, the code consists of the 24 = 16 words that can be
made as binary linear combinations of the four columns of G. For instance
taking 1 times the first column, 0 times the second column, 1 times the third
column, and finally 0 times the fourth column produces the code word

[ 1 0 0 0 1 1 1 ]T+[ 0 0 1 0 1 1 0 ]T = [ 1 0 1 0 0 0 1 ]T ,
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where we used the above rules for addition and multiplication. Using stan-
dard techniques from linear algebra one can check that ColG is the same
as NulH. This amounts to observing that both G and H are of full rank
and that HG = O holds (here O is the 3× 4 zero matrix).

Messages ~m = [ m1 m2 m3 m4 ]T ∈ F4
2 are encoded into code words

by the linear transformation T : F4
2 → F7

2, T (~m) = G~m. We assume a
codeword ~c = T (~m) is send over some noisy channel. If the codeword is not
disturbed we can check this at the receiving end by calculating H~c which
should then be [ 0 0 0 0 ]T . We next consider the case that exactly one
error occurs. This means that exactly one of the elements in ~c is changed
from either 0 to 1 or vice versa. We can formalize this by saying that
~r = ~c + ~e is received where ~e is 0 in all positions except in one where it is
1. For instance we may receive:

~r = [ 1 0 1 0 0 0 1 ]T+[ 0 1 0 0 0 0 0 ]T = [ 1 1 1 0 0 0 1 ]T .

The decoding algorithm now relies on the very nice fact that

H~r = H(~c+ ~e) = H~c+H~e = ~0 +H~e = H~e.

Now if there is an error in position i meaning that the only non-zero element
of ~e is in position i. Then H~r = H~e will equal the ith column of H.
But all the columns of H are different which makes it possible to read of
the position of error from the matrix vector product H~r. Let us assume
~r = [ 1 1 1 0 0 0 1 ]T as above. At the receiving end we calculate

H~r = [ 1 0 1 ],

which tells us that indeed there is an error in the second position. We then
recover the codeword simply by flipping the symbol in position two. Finally,
as the upper part of G is an identity matrix the first four elements of the
recovered word ~c is the message ~m.
In general the [7, 4, 3] code is capable of correcting one error but no more
than that. We will say that its error-correcting capability is 1.

12.2 The decoding problem

Let n > k. Any n × k matrix G of rankG = k defines a code in the same
way as did the 7× 4 matrix G above. It is interesting to observe that if the
entries of such a matrix G are chosen by random then with very high proba-
bility the requirement rankG = k is met. This is another way of saying that
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there are quite a lot of possible choices ofG with rank G given fixed n and k.

The decoding problem is as follows. Let G and a corresponding code-
word ~c be given. Assume we receive the word ~r = ~c + ~e where the number
of non-zero elements in ~e is smaller than or equal to the error-correcting
capability of the code. How can we recover ~c? The problem size is specified
by the parameter (n, k).

In 1978 Berlekamp, McEliece and van Tilborg showed that the decoding
problem is NP-complete. Hence, there is (presumable) no simple general
algorithm or principle that decodes general codes. Therefore, if we just
receive a matrix G without any information on how it was constructed then
we will have huge difficulties in decoding.

12.3 The cryptosystem

We now describe how Bob can set up a protocol and construct a correspond-
ing public key and private key. The idea is that the public key is made public
(surprise) and that Bob keeps the private key to himself (again surprise).
When Alice wants to send a message (plain text) to Bob which should be
kept secret to Eve, Alice uses the protocol and the public key to encrypt it.
Only Bob will be able to decrypt it as he is the only one having the private
key. The details are as follows:

• Bob chooses an n × k matrix G with rank G = k. He does this in
such a way that the code has good error-correcting capability, say it
can correct up to t errors. The code is chosen from a family of codes
for which efficient decoding algorithms are known.

• Bob chooses an invertible k×k matrix S. (S stands for substitution).

• Bob chooses an n×n permutation matrix P . This is a binary matrix
with exactly one 1 in each row and in each column.

• Bob calculates G′ = PGS (which is possible for him as he followed
the linear algebra course).

Public key: G′ (appears to be random, but is not), and t.
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Private key: S−1, P−1 = P T , and a decoding algorithm for the code
corresponding to G.

Encryption: Alice wants to send the message (plain text) ~m to Bob. She
first calculates the matrix-vector product ~c′ = G′ ~m. She then adds up to
t random errors as follows: ~r′ = ~c′ + ~e′. This is the cipher text to be send
over a public channel of some kind.

Decryption: Bob receives ~r′ which he decrypts as follows: He first calcu-
late ~r = ~r′P−1. Then he use the decoding algorithm for G. This produces a
codeword ~c which differs from ~r in at most t positions. He then determine
~m′ such that G~m′ = ~c. Finally, the plain text is found as ~m = S−1 ~m′.

It remains to be shown that actually the above decryption method finds
the plain text. We have

~r = ~r′P−1

= (~c′ + ~e′)P−1

= ~c′P−1 + ~e′P−1

= ~c+ ~e

= G(S ~m) + ~e.

The following two crucial observations is what makes the decryption work:

1. ~e = P−1~e′ has at most t non-zero elements.

2. ~m′ = S ~m is not the “real” message, but it can be thought of as a
related message with corresponding codeword ~c.

Observe, that during the decryption we find at no point the code word
corresponding to the plain text.

12.4 A worked through example

We shall use the [7, 4, 3] binary Hamming code and the corresponding ma-
trices G and H described previously. Bob chooses
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S =


1 1 0 1
1 0 1 1
0 0 1 0
1 1 1 0

 P =



0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0


and calculates

S−1 =


1 1 0 1
1 1 1 0
0 0 1 0
1 0 1 1

 G′ = PGS =



1 1 1 0
1 1 0 1
0 1 0 0
1 0 1 1
1 0 0 0
0 0 0 1
0 0 1 0


.

Alice wants to send the message ~m = [ 1 1 0 1 ]T to Bob. Using G′

he encodes it to ~c′ = [ 0 1 1 0 1 1 0 ]T . She then adds an error in
position 6. that is she sends

~r′ = ~c′ + ~e′ = [ 0 1 1 0 1 0 0 ]T

At the receiving end Bob first calculate

~r = P T~r′ = (~r′P )T = [ 1 0 0 0 1 0 1 ]T .

Using the decoding method for [7, 4, 3] binary Hamming codes as described
previously Bob find the following codeword which is very “close” to ~r,
namely ~c = [ 1 0 0 0 1 1 1 ]T . This corresponds to the “message”
~m′ = [ 1 0 0 0 ]T . The plain text is recovered as

~m = S−1 ~m′ = [ 1 1 0 1 ]T

Further Reading

Wikipedia: http://en.wikipedia.org/wiki/McEliece_cryptosystem

http://en.wikipedia.org/wiki/McEliece_cryptosystem
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Chapter 13

Just relax: Computing shortest paths

Keywords: Algorithms, graph theory.

13.1 Finding the shortest paths

Given a map with finitely many points, one of which is taken as the source,
and distances between pairs of points, find the shortest paths to all other
points on the map. This problem arises in many different settings. Some
examples are [3]:

• Maps

• Robot navigation.

• Texture mapping.

• Game programming.

• Typesetting in TEX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Telemarketer operator scheduling.

• Subroutine in advanced algorithms.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.
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Here we shall describe two different algorithms for solving the shortest-
paths problem. Both have their strengths and weaknesses.

13.2 Directed graphs

The mathematical apparatus that can be used to describe the shortest-paths
problem and solutions to it is that of directed graphs.

A directed graph G is a pair (V,E) where V is a set of vertices and E
is a set of edges. An edge from u to v is a pair (u, v).

A weighted directed graph G is a directed graph (V,E) together with
a weight function w : E → R. We often think of w(u, v) as the cost of
travelling from u to v. If w(u, v) > 0 for all u, v ∈ V we say that w is a
positive weight function.

13.3 Dijkstra’s algorithm

As the name suggests, this algorithm is due to Edsger W. Dijkstra [2]. It
only works for weighted directed graphs whose weight function is positive.

The underlying idea is to find the shortest path leading to a vertex that
has not been examined yet. We now include this vertex in the set S of
examined vertices. When all vertices have been examined, the algorithm
terminates.

The algorithm fills out two tables. Firstly, it updates a table f of prede-
cessors. When the algorithm has finished and the table says that f [v] = u,
this means that the vertex visited just before v on the shortest path from
s to v is u. Secondly, the algorithm updates a table d of shortest distances.
When the algorithm has finished and the table says that d[u] = k, this
means that the shortest path from s to u has a total length of u.

The important step in the algorithm is that of relaxation with respect
to an edge. Whenever a new vertex u has been selected, we check for every
other vertex v if we can get a shorter path by going via u:

RELAX(u,v) =
if d[u] + w(u, v) < d[v] then

f [v]← u
d[v]← d[u] + w(u, v)

The algorithm now looks as follows.

Dijkstra((G,w, s))



13.4. Bellman and Ford’s algorithm 73

d[s]← 0
for all v 6= u, v ∈ V do

d[v] =∞
S ← ∅
while S 6= V do

find a v 6∈ U such that d[v] is minimal
S ← S ∪ {v}

for all v ∈ V \ S do
RELAX(u,v)

How many relaxation steps will Dijkstra’s algorithm need? If our graph
G = (V,E) has n = |V |, then every unvisited vertex in V \S may be relaxed
in every step, so the total number of relaxation steps can be at most n2.

13.4 Bellman and Ford’s algorithm

The idea of the Bellman-Ford algorithm [1] is to relax with respect to every
edge in every iteration. The algorithm will perform this n− 1 times, where
n is the number of vertices in the graph under consideration.

The advantage of this approach is that it can be used to detect cycles
of negative weight. For if there exists a cycle of negative weight, then this
cycle can be extended to have an arbitrarily small total weight by further
relaxation. Therefore we can finish the algorithm by if further relaxation is
possible.

Bellman-Ford((G,w, s))

d[s]← 0
for all u 6= s

d[u]←∞
for i← 1 to n− 1

for each (u, v) ∈ E
RELAX(u, v) for each (u, v) ∈ E

if d[v] > d[u] + w(u, v)
then return The graph contains a negative cycle

How many relaxation steps will the Bellman-Ford algorithm need? If
our graph G = (V,E) has n = |V | and m = |E|, then the algorithm will
always perform exactly nm relaxations.
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A graph can have up to n2 edges, and in this case the running time is
n3 relaxation steps.
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Chapter 14

Data compression and its limits

Keywords: Data compression, Kolmogorov complexity.

14.1 Alphabets and words

Here we shall concern ourselves with compressing text.

Definition 3. An alphabet A is a finite set of characters. A word over A
is a finite sequence of characters from A. The length of a word w is the
number of characters in w; this number is denoted by |w|.

Example 4. A well-known alphabet is the Latin alphabet

D = {a,b,c,d,. . . ,z}

A string over D could be house. Anoter word is kpst.

Example 5. Another alphabet that we shall use in the following is B =
{0, 1}. We refer to words over B as binary words.

For every natural number k there are exactly 2k binary words of length
k. To see this, note that each of the k characters in a word of length k can
be either 0 or 1, so in total there are 2 · 2 · · · 2︸ ︷︷ ︸

ktimes

words of this length.

Definition 4. Let x and y be strings. The concatenation of x and y is
the string that we obtain by plaing the symbols of x before those of y; the
resulting string is denoted xy.

Example 6. Let x = snow and y = mand. Then xy = snowman.

We sometimes need to compare binary strings; to this end we define
the so-called lexicographic ordering. This is the usual ordering known from
dictionaries, except that a short string is always “ less than” a longer string.
Our alphabet is {0, 1} and we assume that 0 is the first letter of the alpha-
bet.
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Definition 5. Let x and y be binary strings. We say that x is lexicographi-
cally less than y if x appears earlier in the dictionary of binary strings than
y. We then write x < y.

Example 7. We have that 0 < 01, that 01 < 11 and that 11 < 110.

Definition 6. next(s) is the next string that is lexicographically greater
than s.

next(x) thus denotes the “next word in the dictionary after x”. x’.

Example 8. Let x = 01; then we have next(x) = 10. Let y = 111; then
we have next(y) = 0000.

14.2 The binary numerals

Any integer can be represented as a binary string by using base 2 numerals.
In this binary representation we do not represent numbers using powers of
10 but as powers of 2, so the only digits we need are 0 and 1.

For instance

23 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

which means that the binary representation of 23 is 10111Ẇe denote the
binary representation of n by binary(n).

Exercise 1. Find binary(x) where x is

• 32

• 17

• 119

• 204

How many binary digits will we need to write down binary(n)? We need
as many as the least power of 2 that is greater than n. This is the base-2
logarithm of n.

Definition 7. Let m > 0. The base 2 logarithm of m is defined by

log2m = x

where 2x = m.
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We have that
lnm = ln(2log2 m)

and therefore

log2m =
lnm

ln 2
(14.1)

Exercise 2. Look at the answers you gave in Exercise 1 and check, using
(14.1) that the number of digits was correct.

14.3 Programs

The theory of data compression considers algorithms. I will here only con-
sider algorithms written in a very simple programming language which nev-
ertheless (this will not be proved here) is sufficient to describe any com-
putable function over the naturam numbers.

A program in our language always receives a string as input. We shall
assume that strings are binary strings and that numbers are represented as
binary numerals. Within our actual program text, we represent numerals
in decimal notation (i.e. in base 10).

Programs can use integer values, modify integer-valued variables and
string-valued variables. We assume a small collection of functions on num-
bers and strings: Integers can be manipulated using addition, subtraction
and multiplication. Strings can be concatenated, and for any string s we
can find the string next(s).

The statements that we allow are

• Reading a text string from input. If the input consists of the streng
1101 the statement read(u) will ask for a text string from input
and assign the value 1101 to the string-valued variable u.

• Reading an integer from input written in binary. In other words:
to input the integer n we must supply the program with the string
binary(n). In the input consists of the string 101 the statement
read(x) will result in the integer-valued variable x being assigned

the value 5, since binary(5) = 101.

• Writing a text string to output. For example write(011) will
write the string 011 to output.

• Modifying the values of integer variables. For example

x := x+2
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will increment the value of the variable x by 2.

• repeat-loops. For example the program

x := 4;

y := 2;

r := 1;

repeat

r := r * y;

x := x-1

until x = 0

will, upon termination, satisfy that the variable r holds the value 24,
that the variable x holds the value 0 and the variable y holds the
value 2.

• if-then-else-statements. For example we could write

if x = 3 sthen

write(0)

else write(1)

• A program can call procedures. A procedure has a sequence of argu-
ments and will return a value. For example we can write

procedure square(x)

y := x *x;

return y;

end of procedure;

z := 5;

z := square(z);

In this tiny program the variable z gets the value 25.

Exercise 3. Write a program that does the following

1. If the input is 0 the program computes the sum of the values of the
integernvariables x and y. If the input is 1 the program computes
the product of the values of the integernvariables x and y.

2. Print out the result in binary (such that if e.g. the result is 7, the
program prints out 111 ).
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Exercise 4. Write a procedure length that computes the length of a
binary streng. Hint: Use the next()-function and remember how many
strings there are of length i.

14.4 Programs are binary strings

For the remainder of this text I shall make an important assumption that
will life a lot easier: A program is a binary string. It is easy to encode each
character in our usual set of characters as a sequence of 0’s and 1’s.

Exercise 5. Find out how to translate the program

x := 7;

x := x+2;

udskriv(1)

to a binary string. Hint: First find out how to translate each character.

Why is this such a good idea? Remember that we assume that the input
of a program is a binary string. We can now speak of programs that take
programs as input..

The following program examples are written so as to be readable but
we could easily translate them to binary strings, if need be.

14.5 Data compression

A data compression algorithm is a function over strings. It must satisfy
some natural requirements.

Compression must not increase the size of data

First and foremost a compression function must not yield a string longer
than the original one.

In other words we are only interested in functions f that satisfy the
condition

|f(s)| ≤ |s|

for every string s.
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Compression must not lead to information loss

We distinguish between lossy and lossless data compression. In the case
of lossy compression, the result of applying the compression function and
subsequently uncompressing the result will in general not give us back the
original data – information is lost. Lossy compression is well-suited for
compressing complicated data that human senses are only able to distin-
guish up to a certain levelas pictures and sound. The MPEG and MP3 data
formats make use of lossy compression.

On the other hand, it is of course not acceptable to lose information
when compressing a written text. In the following we shall only consider
lossless compression .

Decompression must always be well-defined

A compressed datum must of course be decompressable to one and only one
original piece of text. Therefore, the compression function must be 1-1.

Definition 8. Let f be a function with domain A and range B. f is 1-1
(injective) if we have for all x, y ∈ A that if f(x) = f(y) then also x = y.

Definition 9. Let f be a 1-1 function with domain A and range B. If for
some z ∈ B we have that there exists an x ∈ A such that f(x) = z, we
denote this x by f−1(z) and refer to x as the inverse image of z.

Compression must be computable

Finally, we require that a compression function f must be computable in
the sense that there exists a program that for any input string w will write
the string f(w) to output and terminate.

All of these lead to the following.

Definition 10. A compression function is a computable, 1-1 function f
over strings such that |f(s)| ≤ |s|.

14.6 Kolmogorov complexity

The underlying intuition of the Kolmogorov theory of information is that
we can measure the information of a text string s as the length of the
shortest description of s. In this setting a description is a program with an
associated input.
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Definition 11. Let x be a binary string. A description of x is a pair 〈P,w〉
where P is a program and w is string such that P , when run with input w,
will write x and nothing else to output and then terminate. The length of
〈P,w〉 is |P |+ |w|.

Note the Definition 11 tells us that distinct strings must have distinct
descriptions.

Example 9. Let s be the string 010101010101. The program

t := 1;

read(x);

repeat

x := x01

t := t+1

until t = 6;

write(x)

and the input string 01 are a description of s.

Definition 12. Let x be a binary string. The minimal description of x,
written d(x) is the shortest description of x1

Example 10. The program

write(1)

together with the empty input string form a minimal description of the
string 1.

One can in general have more than one minimal description of a string;
for this reason we do not speak of the minimal description.

Definition 13. Let x be a string. The Kolmogorov complexity of x, denoted
K(x), is the length of a minimal description of x. That is,

K(x) = |d(x)|

The Kolmogorov complexity of a string is at most the length of a string
plus a constant whose value does not depend on the string.

Theorem 2. There exists a constant c such that for every x we have that
K(x) ≤ |x|+ c.

1If there are several possible descriptions, we choose the pair that is lexicographically
smallest.
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Proof. The program Pident:

read(x);

write(x)

reads a string from input and outputs it. The pair 〈Pident, x〉 is therefore
a description of x, and we can choose c to be the length of P .

The following result tells us that there exist strings of arbitrarily high
Kolmogorov complexity.

Theorem 3. For every natural number c there exists a string s such that
K(s) ≥ c.

Proof. Let c be an arbitrary natural number. We know that there are at
must B =

∑c
i=0 2i strings of length less than our equal to c.

Since this means that there can be at most B different descriptions of
length at most c, and since there are infinitely many strings, some string
must have a Kolmogorov complexity at least c.

14.7 Some strings cannot be compressed

How is data compression related to Kolmogorov complexity? The connec-
tion is this: Data compression has as its goal to represent a string s by a
shorter string that contains the same information as s – in other words, a
shorter description of s.

Intuitively a string s can only be compressed if we can find a description
of s that is shorter than s, i.e. if K(s) < |s|.

Definition 14. Let c > 0 be a natural number. A string s is c-compressibleif
we have that

K(s) ≤ |s| − c

If s cannot be compressed by at least c characters, we say that s is c-
uncompressible. If s is even 1-uncompressible, we say that s is uncompress-
ible.

Theorem 4. There exist uncompressible binary strings of every length.

Proof. We show that for any given n there exists an uncompressible string
of length n. First we recall that there are 2n binary strings of length n.
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Let S be the number of distinct descriptions whose length is less than
n. We have that

S =
n−1∑
i=0

2i = 1 + 2 + 4 + 8 + . . .+ 2n−1 (14.2)

If we multiply by 2 on both sides of (14.2) we get

2S = 2
n−1∑
i=0

2i = 2 + 4 + 8 + 16 . . .+ 2 · 2n−1

But from this we see that

2S = 2
n−1∑
i=0

2i = 2 + 4 + 8 + 16 . . .+ 2 · 2n−2︸ ︷︷ ︸+2 · 2n−1 (14.3)

=

(
n−1∑
i=0

2i

)
+ 2n − 1 (14.4)

= S + 2n − 1 (14.5)

If we subtract S we see that

S = 2n − 1 (14.6)

So there can be at most 2n− 1 descriptions of length < n, but there are 2n

strings of length n. This means that there has to exist a string of length 2n

whose description has length n or more.

The consequence of Theorem 4 is that no algorithm for data compress
will be able to compress every string.

14.8 K(s) is not computable

It would be nice if we could devise a program that could compute K(s) for
a given string s. K(s) tells us the length of the shortest description of s
and therefore tells us how much we can ever hope to compress s. If we
could compute K(s), this would tell us if there any point at all to using a
compression algorithm.

But we cannt even find out if K(s) is less than a given number k. This
result is a direct consequence of a version of Berry’s paradox.

Berry’s paradox is due to the Welsh mathematician and philosopher
Bertrand Russell who named it after a librarian at Oxford University.

The paradox goes as follows. Consider this description of a natural
number:
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The least integer that cannot be described using fewer than
twenty-four syllables.

If you count the syllables in the above description you will notice that it
uses twenty-three syllables! Still, it describes a number that cannot be
described using fewer than twenty-four syllables.

Theorem 5. There is no program that can take a string s and a number k
as input and correctly tell us if K(s) ≥ k.

Proof. Assume that we had such a program P that could provide us with
the correct answer for every string s and number k. But then we could use
P as a sub-program of the following program P1:

subprogram p(s,k)

...

end of subprogram;

read(n)

w := "";

repeat

if p(w,n) is true then

return(w)

else

w := next(w)

until p(w,n) is true;

return(w)

P1 takes the string binary(n) for a number n and examines all strings in
lexicographic order until it discovers a string w such that K(w) ≥ n. Such
a string must exist; we know this from Theorem3.

If we give P1 the number n we see that 〈P1, binary(n)〉 has length |P1|+
log2 n.

We know that n > log2 n for all n > 1, so we can find a number N such
that

N > |P1|+ log2N

Let N be the least such N . But 〈P1, binary(N)〉 is a program of length
|P1| + log2N that returns a string s where K(s) ≥ N . In other words
〈P1, binary(N)〉 is a description of this s. But this contradicts the claim
that K(s) ≥ N , which says that the shortest description of s has length at
least N .

The only possible conclusion is that the program P cannot exist.
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Why does this tell us that we cannot compute K(s)? The answer is
simple: If we had a program for computing K(s), we would immediately
know if K(s) ≥ n.
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s f(s)

f

Figure 14.1: A compression function f creates the string f(s) from the
input string s
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