Trial Exam 2011

Mathematics for Multimedia Applications Medialogy

25. May 2011

Formalities

This trial exam set consists of 4 pages. There are 10 problems containing 32 sub-problems in total.

A number of points is indicated for every sub-problem. The sum of these points equals 100.

Date and time for the real exam: 1. June, 9:00 -13:00

You must indicate the following on each page:

- Full name
- Study number
- Page number

On the first page, you must indicate

• The total number of pages.

Problems

Problem 1.

- 1.a. (3 points) Differentiate the function $\sqrt{x}\sin(x)$.
- 1.b. (3 points) Let $f(x) = 3\sin(x^2 + 5)$. Calculate f'(x).

Problem 2. Let $f(x) = 3\cos(2x)$.

- 2.a. (2 points) Calculate f'(x).
- 2.b. (3 points) Find an x such that f'(x) = 0.
- 2.c. (5 points) Find all x such that f'(x) = 0.

Problem 3. Consider the function $y(t) = A\sin(\omega t)$, where A and ω are constants.

- 3.a. (4 points) Let $\omega = 1$. Sketch the graph of y(t), $0 \le t \le 2\pi$ for A = 1 and A = 2 in the same (t, y)-coordinate system.
- 3.b. (4 points) Let A = 1. Sketch the graph of y(t), $0 \le t \le 2\pi$ for $\omega = 1$ and $\omega = 2$ in a new (t, y)-coordinate system.
- 3.c. (4 points) Calculate y'(t) and y''(t) for the function $y(t) = A\sin(\omega t)$.

Problem 4. Evaluate the following integrals:

- 4.a. (3 points) $\int_{-1}^{1} (3x^2 + 8x + 1) dx$.
- 4.b. (3 points) $\int_0^{\pi/2} (\cos(x) + 2) \, \mathrm{d}x.$
- 4.c. (3 points) $\int_{1}^{3} \frac{1}{x} dx$.

Problem 5. Let P, Q and R be three points in 3D-space; P has coordinates (1, 2, 0), Q has coordinates (1, 4, 0) and R has coordinates $(4, 4, \sqrt{3})$.

5.a. (2 points) Find \overrightarrow{PQ} and \overrightarrow{PR} .

5.b. (2 points) Write parametric equations of the line that passes through P and Q.

5.c. (4 points) Find the angle between \overrightarrow{PQ} and \overrightarrow{PR} .

Problem 6. Let P, Q and R be three points in 3D-space; P has coordinates (7, 2, 3), Q has coordinates (8, 2, 2) and R has coordinates (9, 5, 4).

6.a. (2 points) Find \overrightarrow{PQ} and \overrightarrow{PR} .

6.b. (3 points) Compute the cross product $\overrightarrow{PQ} \times \overrightarrow{PR}$.

6.c. (3 points) Find the area of the triangle with vertices P, Q and R.

6.d. (3 points) Find an equation for the plane through P, Q and R.

Problem 7. Consider a moving point in 3D-space with position vector given by

$$\vec{r}(t) = (\sin(t), \cos(t), t)$$

Here is a plot of the associated curve for the time interval $0 \le t \le 10$:

- 7.a. (3 points) Compute the velocity vector $\vec{v}(t)$ and the speed $v(t) = |\vec{v}(t)|$.
- 7.b. (2 points) Compute the acceleration vector $\vec{a}(t)$.
- 7.c. (2 points) Compute the angle between $\vec{v}(t)$ and $\vec{a}(t)$.

Problem 8. Consider the following system of linear equations:

$$x_1 + x_2 - 6x_3 = 3$$
$$x_2 + x_3 = 2$$
$$2x_1 + x_2 - 13x_3 = 4$$

- 8.a. (2 points) Find the augmented matrix of the system.
- 8.b. (4 points) Find a row echelon form of the augmented matrix and mark the pivot positions.
- 8.c. (3 points) Find the reduced row echelon form of the augmented matrix.
- 8.d. (4 points) Write down the general solution of the system.

Problem 9. Define three matrices as follows:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

- 9.a. (3 points) Compute the product AB.
- 9.b. (3 points) Compute the product BA.
- 9.c. (4 points) Find $A^T B^T$.

9.d. (5 points) Determine whether C is invertible. If so, find its inverse.

Problem 10. Consider the unit square with vertices (0,0), (1,0), (0,1) and (1,1) in an (x, y)-coordinate system. For each of the following three matrix transformations, sketch the image of this unit square.

10.a. (3 points)
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

10.b. (3 points) $T\begin{pmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
10.c. (3 points) $T\begin{pmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$