Re-Exam 2015

Mathematics for Multimedia Applications Medialogy

14 August 2015

Formalities

This exam set consists of 4 pages, in which there are 8 problems. You are allowed to use books, notes etc. You are *not* allowed to use electronic devices such as calculators, computers or cell phones.

A number of points is indicated for every sub-problem. The sum of these points equals 100.

Date and time for the exam: 14 August, 9:00 - 13:00.

You must indicate the following on each page:

- Full name
- Study number
- Page number

On the first page, you must indicate

• The total number of pages.

Good luck!

Problems

Problem 1.

1.a. (4 points) Differentiate the function $f(x) = \sin(2x - 1)$.

1.b. (4 points) Differentiate the function $g(x) = x^3 e^{2x}$.

1.c. (3 points) The graph of the function g(x) above has a tangent at the point (0,0). What is the slope of that tangent?

Problem 2.

2.a. (3 points) Prove that the following identity holds:

$$\cos(3x) = \cos(2x)\cos(x) - \sin(2x)\sin(x).$$

Hint: Write 3x as 2x + x and use a trigonometric addition formula.

2.b. (4 points) Prove the following trigonometric identity:

$$\cos(3x) = \cos^3(x) - 3\sin^2(x)\cos(x).$$

Hint: Use the double angle formulas.

2.c. (3 points) Describe all solutions of the equation

$$\cos^{3}(x) - 3\sin^{2}(x)\cos(x) = 1.$$

Problem 3.

3.a. (3 points) Calculate the sum

$$\sum_{i=1}^{5} (i-1)(i+1).$$

3.b. (4 points) Calculate the sum

$$\sum_{i=1}^{20} (i^2 - 1).$$

2

Problem 4. Evaluate the following integrals:

4.a. (5 points) $\int_0^1 (e^x + x^3) dx$.

4.b. (5 points) $\int_0^{\pi/4} (\cos(2x) - \cos(4x)) dx$.

Problem 5. Let P, Q, R and S be points in 3D-space with coordinates (1,0,1), (3,-2,1), (5,-4,1) and (6,-4,0) respectively.

- 5.a. (4 points) Find the coordinates of the vectors \overrightarrow{PQ} and \overrightarrow{RS} . Show that the dot product $\overrightarrow{PQ} \bullet \overrightarrow{RS}$ is equal to 2.
- 5.b. (4 points) Let ℓ_1 denote the line through P and Q and ℓ_2 the line through R and S. Find parametric equations of these two lines.
- 5.c. (3 points) Show that the two lines ℓ_1 and ℓ_2 intersect at the point R.
- 5.d. (4 points) Compute the angle between the lines ℓ_1 and ℓ_2 .
- 5.e. (3 points) Compute the cross product $\overrightarrow{PQ} \times \overrightarrow{RS}$.

Problem 6. The position vector of a moving particle in 3D-space is given by

$$\vec{r}(t) = (\sin(t), \cos(t), \cos(3t)).$$

Here is a plot of the motion curve when the time t runs from 0 to 2π :

- 6.a. (3 points) Find the velocity vector $\vec{v}(t)$.
- 6.b. (2 points) Find the speed $\nu(t)$.
- 6.c. (3 points) What is the position vector, velocity vector and speed of the particle at time t = 0?
- 6.d. (3 points) What is the maximal speed of the moving particle?
- 6.e. (3 points) Find the acceleration vector $\vec{a}(t)$.

Problem 7. Consider the following system of linear equations:

$$x_1 - 2x_3 = 3$$
$$x_1 + x_2 + 3x_3 = 4$$
$$2x_2 + 10x_3 = 2.$$

- 7.a. (3 points) Find the augmented matrix of the system.
- 7.b. (5 points) Find the reduced row echelon form of the augmented matrix.
- 7.c. (4 points) Write down the general solution of the system.
- 7.d. (3 points) Find a solution of the system which has $x_2 = 1$.

Problem 8. Define two matrices as follows:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 3 \end{bmatrix}.$$

- 8.a. (4 points) Compute the matrix product AB.
- 8.b. (3 points) Find $A + A^T$.
- 8.c. (4 points) Determine whether A is invertible. If so, find its inverse.
- 8.d. (4 points) Solve the following system of linear equations:

$$x_1 + 2x_3 = 2$$

$$x_2 - x_3 = 3$$

$$x_1 + 3x_3 = 1.$$

Appendix

Exact values for trigonometric functions of various angles.

	0°	30°	45°	60°	90°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

4