Reexam in Discrete Mathematics

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

August 15th, 2017, 9.00-13.00

This exam consists of 11 numbered pages with 15 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.
It is allowed to use books, notes, photocopies etc. It is not allowed to use any electronic devices such as pocket calculators, mobile phones or computers.

The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:

STUDENT NUMBER:

There is only one correct answer to each question.

Problem 1 (8%)

1. How many rows appear in a truth table of the compound proposition

$$
(p \vee r) \wedge(r \rightarrow q) \vee s
$$

$\square 1$
$\square 2$
2
$\square 4$
8
12
16
2. Are the propositions $\neg(p \wedge q)$ and $\neg p \vee q$ equivalent?Yes
No
3. Is the compound proposition $(p \rightarrow q) \leftrightarrow(\neg p \vee q)$ a tautology?
\square Yes
\square No
4. Are the propositions $\neg(p \rightarrow q)$ and $(p \wedge \neg q)$ equivalent?
\square Yes

Problem 2 (4 \%)

Which rule of inference is used in the following argument:
"I will go to London or Paris. I will not go to London. Therefore, I will go to Paris."
\square Conjuction
\square Modus tollens
\square Modus ponens
\square Hypothetical syllogism
\square Disjunctive syllogism

Problem 3 (10 \%)

Let $A=\{1,2,5,\{6\}\}$, and $B=\{\emptyset, 1,\{2\}, 6,7\}$, be sets.

1. Is $\{2\} \subseteq B$?
\square Yes

2. What is the cardinality of $A \cap B$?
$\square 0$
$\square 1$
$\square 2$
$\square 3$
$\square 4$
$\square 5$
6
$\square 7$
3. What is the cardinality of $A \cup B$?
$\square 2$
$\square 3$
$\square 4$
$\square 5$
6
$\square 7$
8
$\square 9$
4. What is the cardinality of the power set $\mathcal{P}(A)$?$0 \quad \square 2$
6 \square $\square 12$
16
$\square 22$
$\square 32$
5. What is the cardinality of $A \times B$?
$\square 0$$\square 4$$\square 10$20
200
$\square 2^{9}$

Problem 4 (9 \%)

Let

$$
f(x)=x^{3} \log \left(x^{2}\right)+\log \left(x^{10}+1\right)+x^{3},
$$

for $x>0$.
Answer the following true/false problems.

1. $f(x)$ is $O\left(x^{10}\right)$

True
True
True
True
True
True
True
True
True

FalseFalse
\square False
\square False
\square False
\square False
\square FalseFalse

Problem 5 (4 \%)

$(5+55+101)(576 \cdot 555+10000000002) \bmod 5$ is equal to
$\square 0$
$\square 1$
$\square 2$
$\square 3$
$\square 4$

Problem 6 (7\%)

What is the inverse of 7 modulo 53 ?

| $\square 14$ | $\square 15$ | $\square 16$ | $\square 17$ | $\square 37$ | \square | $\square 8$ | \square | $\square 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\square 43 \quad \square 45$

Consider the following algorithm:
procedure Alg (n : positive integer)

```
\(a:=1\)
\(b:=1\)
for \(i:=1\) to \(n\)
    for \(j:=1\) to 1000000
        for \(k:=1\) to \(n\)
            \(a:=a \cdot b\)
        \(b:=3 \cdot b\)
    return \(a\)
```

The number of multiplications used by this algorithm is
$\square O(n)$
\square
$\square O\left(n^{2}\right)$
$\square \Theta\left(n^{3}\right)$
$\square O(n \log n)$

Let $(2 x-y)^{5}=a x^{5}+b x^{4} y+c x^{3} y^{2}+d x^{2} y^{3}+e x y^{4}+f y^{5}$, where a, b, c, d, e, f are integers.

1. One has that a is equal to
$\square 1$
$\square 8$
$\square 5$
$\square 16$
32
$\square 100$
2. One has that c is equal to
$\square-80$
$\square-40$-20
$\square-10$
$\square 10$
20
40
3. One has that d is equal to
$\square-80 \quad \square-40 \quad \square-20 \quad \square-10 \quad \square 10 \quad \square 20 \quad \square 40 \quad \square 80$

Problem 9 (4 \%)

Consider the following set of integers

$$
S=\{x \mid-63 \leq x \leq 126 \wedge x \equiv 5(\bmod 7) \wedge x \equiv 5(\bmod 9)\}
$$

How many integers are there in S ?
$\square 0$$\square 2$
$\square 3$
$\square 4$$\square 63$126 189

Problem 10 (6 \%)

Consider the following linear homogeneous recurrence relation

$$
a_{n}=a_{n-1}+6 a_{n-2} .
$$

Which of the following is the solution of this recurrence relation (α_{1} and α_{2} are constants)?
$\square a_{n}=\alpha_{1}(-2)^{n}+\alpha_{2}(-3)^{n}$
$\square a_{n}=\alpha_{1}+\alpha_{2} 3^{n}$
$\square a_{n}=\alpha_{1}+\alpha_{2} 2^{n}$
$\square a_{n}=\alpha_{1}(-2)^{n}+\alpha_{2} 3^{n}$
$\square a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-3)^{n}$

Problem 11 (6\%)

A set of integers S is defined recursively by

- $0 \in S, 5 \in S$ and $6 \in S$
- if $a \in S$ and $b \in S$ then $a+b$ is also in S.

Answer the following questions about S

1. What is the largest integer not contained in S ?
9
$\square 13 \quad \square 14$
1819
] 20
2122
2. S consists of all numbers of the form $5 r+6 t$ where r and t are integers satisfying ...
What is the correct continuation?$r>0 \wedge s>0$
$\square r \geq 0 \wedge s \geq 0$
$\square r \geq 0 \wedge s \geq 0 \wedge r+t>0$
$\square r \geq 1 \vee s \geq 0$
$\square r>6 \vee s \geq 5$

Problem 12 (10 \%)

Let $A=\{1,2,3,4\}$ be a set. Consider the following three relations on A

$$
\begin{gathered}
R=\{(1,1),(1,2),(1,3),(2,4),(3,2)\} \\
S=\{(1,4),(1,3),(2,3),(3,1),(4,1)\} \\
T=\{(1,2),(2,3),(3,4),(2,1)\}
\end{gathered}
$$

1. Answer the following true/false problems.

R is reflexive	\square True	\square False
R is symmetric	\square True	\square False
R is antisymmetric	\square True	\square False
R is transitive	\square True	\square False
$(2,1) \in S \circ R$	\square True	\square False
$(2,1) \in R \circ S$	\square True	\square False

2. How many pairs (a, b) are there in the symmetric closure of S ?
0
$\square 1$
\square
5
$\square 6$
$\square 7$
8
$\square 9$
10
3. How many pairs (a, b) are there in the transitive closure of T ?$0 \quad \square$ 1 \square5 \square 6
7
8
9

Figure 1: The graph G, considered in Problems 13 and 14.

Problem 13 (10 \%)

In this problem we use Dijkstra's algorithm (see Figure 2 on page 11) on the graph G in Figure 1.

1. What is the length of the shortest path from a to z (found by Dijkstra's algorithm)?
$\square 6$
$\square 7$
$\square 8$
$\square 9$
$\square 10$11
$\square 12$
\square 13
2. In what order are vertices added to the set S ?
$\square a, b, c, g, z$
$\square a, b, e, c, g, i, j, z$
$\square a, b, e, c, g, i, z$
$\square a, b, c, g, i, z$
$\square a, b, e, c, g, z$
$\square a, b, c, e, i, g, z$
$\square a, b, c, d, e, f, g, h, i, j, k, z$

Problem 14 (5 \%)

What is the weight of a minimum spanning tree of the graph G in Figure 1.$\square 19 \quad \square 20 \quad \square 21$
21
22
$\square 23$
$23 \square$

- 2425
$\square 26$
27

Problem 15 (6\%)
Let T be a full binary tree with 6 leaves.

1. How many vertices are there in T ?
$\square 5$
$\square 6$
\square
8$9 \quad \square 10$
$10 \quad \square 11$
12
2. What is the least possible height of T ?
$\square 0$$\square 2$
$\square 3$
4
$\square 5$
6
3. What is the largest possible height of T ?
$\square 0$
$\square 1$
$\square 2$
$\square 3 \quad \square 4$
$4 \quad \square 5$
$\square 6$
$\square 7$
procedure $\operatorname{Dijkstra}(G$: weighted connected simple graph, with all weights positive)
$\left\{G\right.$ has vertices $a=v_{0}, v_{1}, \ldots, v_{n}=z$ and lengths $w\left(v_{i}, v_{j}\right)$
where $w\left(v_{i}, v_{j}\right)=\infty$ if $\left\{v_{i}, v_{j}\right\}$ is not an edge in $\left.G\right\}$
for $i:=1$ to n
$L\left(v_{i}\right):=\infty$
$L(a):=0$
$S:=\emptyset$
\{the labels are now initialized so that the label of a is 0 and all other labels are ∞, and S is the empty set\}
while $z \notin S$
$u:=$ a vertex not in S with $L(u)$ minimal
$S:=S \cup\{u\}$
for all vertices v not in S
if $L(u)+w(u, v)<L(v)$ then $L(v):=L(u)+w(u, v)$ \{this adds a vertex to S with minimal label and updates the labels of vertices not in $S\}$
return $L(z)\{L(z)=$ length of a shortest path from a to $z\}$
Figure 2:
