Reexam in Discrete Mathematics

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

August 15th, 2017, 9.00-13.00

This exam consists of 11 numbered pages with 15 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.

It is allowed to use books, notes, photocopies etc. It is not allowed to use any electronic devices such as pocket calculators, mobile phones or computers.

The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:	
STUDENT NUMBER:	

 $There\ is\ only\ one\ correct\ answer\ to\ each\ question.$

1.	How many r	ows appear i	n a truth tab	ole of the com	npound propo	sition	
			$(p \lor r) \land ($	$r \to q) \vee s$			
	<u> </u>	<u> </u>	\Box 4	□ 8	□ 12	□ 16	
2.	Are the prop	positions $\neg(p)$	$\wedge q$) and $\neg p$	$\vee q$ equivaler	nt?		
	☐ Yes			☐ No			
3.	Is the compo	ound proposi	tion $(p \to q)$	$\leftrightarrow (\neg p \lor q) \ \epsilon$	a tautology?		
	☐ Yes			☐ No			
4.	Are the prop	positions $\neg(p)$	$\rightarrow q$) and $(p$	$\land \neg q$) equive	alent?		
	☐ Yes		□ No				
			Problem 2	(4 %)			
Which	n rule of infe	erence is used	in the follow	ving argumen	t:		
"I wil Paris."		don or Paris.	I will not g	go to London	. Therefore,	I will go to	
	onjuction odus tollens odus ponens pothetical s sjunctive syl	-					

Problem 1 (8%)

Problem 3 (10 %)

Let A	$1 = \{1, 2, \dots, n\}$	$5, \{6\}\}, a$	and $B = \{$	$\emptyset, 1, \{2\}, 6$	$\{7\}$, be se	ts.		
1.	Is $\{2\} \subseteq$	<i>B</i> ?						
	☐ Yes		☐ No					
2.	What is	the cardin	nality of A	$A \cap B$?				
	0	<u> </u>	<u> </u>	<u> </u>	4	□ 5	□ 6	□ 7
3.	What is	the cardin	nality of A	$A \cup B$?				
	\square 2	□ 3	☐ 4	<u> </u>	□ 6	□ 7	□ 8	9
4.	What is	the cardin	nality of t	he power	set $\mathcal{P}(A)$?			
	0	<u> </u>	☐ 6	8	□ 12	□ 16	□ 22	32
5.	What is	the cardin	nality of A	$A \times B$?				
	0	\square 2	\Box 4	□ 8	□ 10	<u> </u>	□ 200	\square 2 ⁹

Problem 4 (9 %)

Let $f(x) = x^3 \log(x^2) + \log(x^{10} + 1) + x^3,$ for x > 0. Answer the following true/false problems. 1. f(x) is $O(x^{10})$ ☐ True ☐ False 2. f(x) is $O(x^3 \log x)$ ☐ True ☐ False 3. f(x) is $O(x^3)$ True ☐ False 4. f(x) is $\Omega(x^{10})$ ☐ False ☐ True 5. f(x) is $\Omega(x^3 \log x)$ ☐ True ☐ False 6. f(x) is $\Omega(x^3)$ ☐ True ☐ False 7. f(x) is $\Theta(x^{10})$ True ☐ False 8. f(x) is $\Theta(x^3 \log x)$ ☐ True ☐ False 9. f(x) is $\Theta(x^3)$ True ☐ False **Problem 5** (4 %) $(5+55+101)(576 \cdot 555+10000000002)$ mod 5 is equal to \Box 0 \square 1 \square 2 \square 3 \Box 4

What is the inverse of 7 modulo 53? ☐ 15 □ 17 \Box 14 □ 16 ☐ 37 \square 38 \square 39 \square 43 \Box 45 **Problem 7** (5 %) Consider the following algorithm: **procedure** Alg(n: positive integer)a := 1b := 1for i := 1 to nfor j := 1 to 1000000for k := 1 to n $a := a \cdot b$ $b := 3 \cdot b$ return aThe number of multiplications used by this algorithm is

 $\square \Theta(n^3)$

 $\square O(n \log n)$

 $\bigcap \Theta(n^2 \log n) \quad \bigcap O(n^2)$

 $\square O(n)$

Problem 6 (7 %)

Problem 8 (6 %)

Let (integ		$= ax^5 + b$	$x^4y + cx^3$	$y^2 + dx^2y$	$3 + exy^4$	$+ fy^5$, w	here a, b, c	d, d, e, f are				
1.	1. One has that a is equal to											
	1	<u> </u>	□ 8	<u> </u>] 16	☐ 32	□ 100				
2.	One has	that c is	equal to									
	<u>-80</u>	40	20	10	10	<u> </u>	☐ 40	□ 80				
3.	One has	that d is	equal to									
	<u>-80</u>	40	20	<u></u> -10	<u> </u>	<u> </u>	40	□ 80				
	Problem 9 (4 %)											
Cons	Consider the following set of integers											
	$S = \{$	$\{x \mid -63 \le$	$\leq x \leq 126$	$\land \ x \equiv 5$	$\pmod{7}$	$(x) \wedge x \equiv$	5 (mod 9)}				
How	many int	tegers are	there in S	1?								
□ 0	<pre>1</pre>	<u> </u>	□ 3	\Box 4	<u> </u>	☐ 63	126	5 🗌 189				
			\Pr	oblem 10	0 (6 %)							
Cons	sider the f	following l	inear hom	ogeneous	recurrer	ice relatio	n					
			a_n	$= a_{n-1} +$	$-6a_{n-2}$.							
	ch of the tants)?	following	is the sol	ution of t	his recui	rence rela	ation (α_1	and α_2 are				
$ \begin{array}{ccc} $	$\alpha_n = \alpha_1 + \alpha_1$ $\alpha_1 = \alpha_1 + \alpha_2$ $\alpha_1 = \alpha_1(-2)$	$2)^{n} + \alpha_{2}(-\alpha_{2}3^{n})$ $\alpha_{2}2^{n}$ $2)^{n} + \alpha_{2}3^{n}$ $+ \alpha_{2}(-3)^{n}$	ı									
			ъ	o c	1 -1							

Page 6 of 11

Problem 11 (6 %)

A set of integers S is defined recursively by

- $0 \in S$, $5 \in S$ and $6 \in S$
- if $a \in S$ and $b \in S$ then a + b is also in S.

1. What is the largest integer not contained in S?

Answer the following questions about S

	9	□ 13	□ 14	□ 18	□ 19	<u> </u>	<u> </u>	□ 22	<u> </u>
_	~			0 . 1		0.	,		

2. S consists of all numbers of the form 5r + 6t where r and t are integers satisfying . . .

What is the correct continuation?

r > 0	\land	s > 0			
$r \ge 0$	\land	$s \ge 0$			
$r \ge 0$	\wedge	$s \ge 0$	\land	r + t	> 0
$r \ge 1$	\vee	$s \ge 0$			
r > 6	\vee	$s \ge 5$			

Problem 12 (10 %)

Let $A = \{1, 2, 3, 4\}$ be a set. Consider the following three relations on A

$$R = \{(1,1), (1,2), (1,3), (2,4), (3,2)\}$$

$$S = \{(1,4), (1,3), (2,3), (3,1), (4,1)\}$$

$$T = \{(1,2), (2,3), (3,4), (2,1)\}$$

1. Answe	er the fol	lowing tr	ue/false	problems	3.			
R is r	eflexive				True		☐ False	
R is s	ymmetrio	e			True		☐ False	
R is a	ntisymm	etric			True		☐ False	
R is t	ransitive				☐ True			
(2,1)	$(2,1) \in S \circ R$				☐ True			
(2, 1)	$\in R \circ S$				True		☐ False	
2. How r	nany pai	rs (a,b) a	are there	in the sy	mmetric	closure	of S ?	
<u> </u>	<u> </u>	\Box 4	□ 5	□ 6	□ 7	□ 8	<u> </u>	10
3. How i	nany pai	rs (a,b) ϵ	are there	in the tr	ansitive	closure o	of T ?	
<u> </u>	<pre>1</pre>	\Box 4	<u> </u>	□ 6	□ 7	□ 8	<u> </u>	<u> </u>

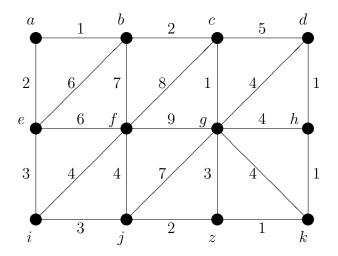


Figure 1: The graph G, considered in Problems 13 and 14.

Problem 13 (10 %)

In this problem we use Dijkstra's algorithm (see Figure 2 on page 11) on the graph G in Figure 1.

1.	What is algorith:		gth of the	shortest	path from	$a ext{ to } z$ (found by	Dijkstra's
	□ 6	□ 7	□ 8	9	□ 10	<u> </u>	□ 12	□ 13
2.		z, g, z z, c, g, i, j, z z, c, g, i, z z, g, i, z z, c, g, z z, c, g, z z, c, g, z			the set S '	?		

Problem 14 (5%)

What i	s the weig	ght of a	minimum	spanning	tree of th	ne graph (G in Figur	re 1.			
□ 19	<u> </u>	21	<u>22</u>	23	<u> </u>	<u> </u>	☐ 26	□ 27			
Problem 15 (6 %)											
Let T l	Let T be a full binary tree with 6 leaves.										
1. H	low many	vertice	s are there	e in T ?							
] 5 [] 6	□ 7	□ 8	9	<u> </u>	<u> </u>	□ 12			
2. V	What is th	e least	possible h	eight of T	?						
] 0 [] 1	\square 2	□ 3	\Box 4	<u> </u>	□ 6	□ 7			
3. V	What is th	e larges	st possible	height of	T?						
Г] 0 [7 1	\square 2	$\prod 3$	$\prod 4$	$\prod 5$	□ 6	$\prod 7$			

```
procedure Dijkstra(G: weighted connected simple graph, with
     all weights positive)
{G has vertices a = v_0, v_1, \dots, v_n = z and lengths w(v_i, v_j)
     where w(v_i, v_j) = \infty if \{v_i, v_j\} is not an edge in G\}
for i := 1 to n
     L(v_i) := \infty
L(a) := 0
S := \emptyset
{the labels are now initialized so that the label of a is 0 and all
     other labels are \infty, and S is the empty set}
while z \notin S
     u := a vertex not in S with L(u) minimal
     S := S \cup \{u\}
     for all vertices v not in S
           if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
           {this adds a vertex to S with minimal label and updates the
           labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}
```

Figure 2: