Miniproject 4

Applications to Computer Graphics

In this miniproject you will learn about rotations of 3D-space and see how matrices are applied in computer graphics. Start by reading Section 6.9, from page 587 to the middle of page 589. (An orthogonal matrix is a square matrix whose columns are orthogonal unit vectors). Then solve the following problems by hand:

- Section 6.9, page 599, Problems no. 1, 3, 5.

Download the files tower. m and linesegmentplot. m from the webpage www.first.math.aau.dk and save them in your MATLAB folder. Read the text in the script tower.m. Run the script in MATLAB such that both the command window and the figure window are visible.

- Modify the script, such that the original tower is rotated 30° about the y-axis.
- Apply the transformation matrices from problems 1,3 and 5 above to the original tower and plot the result in each case.

Another type of matrix, which is used in computer graphics, is the scaling matrix.

$$
S=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

- Compute the matrix-vector product $S \mathbf{v}$, where $\mathbf{v}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}$. Which effect does left multiplication by S have on 3D-vectors?
- Modify the script such that the original tower is scaled by 2 in the z-direction, and plot the result.

