Miniproject 2:

Number theory and applications

In this miniproject you will work with concepts and algorithms from Sections 4.3, 4.4 and 4.5 in [Rosen]. Remember that miniprojects are part of the curriculum for exam. Answers to exercises are found at the end of this document.

Exercise 1:

This exercise is done by hand. Given $a=3$ we want to find \bar{a} such that $\bar{a} a \equiv 1(\bmod 7)$. Find \bar{a} by trying different values. (Why do you only need to try values in $\{0,1,2 \ldots 6\}$?).

Exercise 2:

This exercise is done by hand. Given $a=5$, we want to find \bar{a} such that $\bar{a} a \equiv 1(\bmod 19)$. You should use the Euclidean algorithm to determine \bar{a} (as in Examples 1 and 2 i Section 4). When you have found the answer then test that it satisfies the required congruence.

Exercise 3:

This exercise is done with the help of Maple. The command "igcdex (a, b, s, t) " in Maple computes and returns the greatest common divisor of the integers a and b. Furthermore it saves in variables " s " and " t " values satisfying that $\operatorname{gcd}(a, b)=s a+t b$. You can access the value of s by writing " s " on a commandline and pressing enter. Given $a=103$ and $m=4627$, find \bar{a} so that $\bar{a} a \equiv 1(\bmod \mathrm{~m})($ Argue that $\bar{a}=s)$. Test that the computed value of \bar{a} satisfies $\bar{a} \cdot 103 \equiv 1(\bmod 4627)$.

Exercise 4:

This exercise is a continuation of Exercise 2 and is done by hand. Use the method described in Example 3 in Section 4.4 to solve the congruence

$$
5 x \equiv 2(\bmod 19) .
$$

Exercise 5:

This exercise is a continuation of Exercise 3 and is done in Maple. Use the method described in Example 3 in Section 4.4 to solve the congruence

$$
103 x \equiv 14(\bmod 4627)
$$

SAVE YOUR WORKSHEET BEFORE YOU DO THE NEXT EXERCISE. As part of this exercise you may experience that Maple crashes.

Read Section 4.4 in Rosen's book.

Exercise 6:

Enter in Maple the expression " $3{ }^{2005} \bmod 11$ " and press return to get the answer. Repeat with " $3^{20005} \bmod 11$ ", with " $3^{200005} \bmod 11$ " etc. Continue until Maple can not do the computation. For example Maple can not handle " $3^{2000000000005} \bmod 11$ " unless you use some trick. (If necessary restart Maple.) Compute $2000000000005 \bmod 10($ why 10 ?) and use Fermat's Little Theorem (Theorem 3 in Section 4.4) to compute $3^{2000000000005} \bmod 11$ as in Example 9 in Section 4.4.

Exercise 7:

This exercise is done by hand. Compute $3^{40} \bmod 13$, using the method described in Example 9 in Section 4.4.

Exercise 8:

We consider a system of congruences:

$$
\left\{\begin{array}{llr}
x & \equiv 1 & (\bmod 6) \tag{1}\\
x & \equiv 2 & (\bmod 7) \\
x & \equiv 3 & (\bmod 11)
\end{array}\right.
$$

Let $a_{1}=1, a_{2}=2, a_{3}=3, m_{1}=6, m_{2}=7$ and $m_{3}=11$.

1. Argue that m_{1}, m_{2}, m_{3} are pairwise relatively prime.
2. Determine M_{1}, M_{2}, M_{3}.
3. Compute the multiplicative inverse of M_{1} modulo m_{1} (This inverse is denoted by y_{1} in the proof of Theorem 2 in Section 4.4.) Thus you should find a number y_{1} satisfying that

$$
y_{1}\left(M_{1} \bmod m_{1}\right) \equiv 1\left(\bmod m_{1}\right)
$$

Find y_{1} by trying different values (or by using the extended Euclidean algorithm).
4. Similarly find the multiplicative inverse y_{2} of M_{2} modulo m_{2}.
5. Also find the multiplicative inverse y_{3} of M_{3} modulo m_{3}.
6. Solve the system of congruences (1) using the following formula from the proof of Theorem 2:

$$
x \equiv a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3}\left(\bmod m_{1} m_{2} m_{3}\right) .
$$

Exercise 9:

Show that Theorem 2 on page 275 has the following form for $n=2$: (The problem is in particular to show that the expression for x from the proof of Theorem 2 is as shown below.)
The Chinese Remainder Theorem for $n=2$ congruences.
Let m_{1} and m_{2} be relatively prime integersgreater than one and let a_{1} and a_{2} be arbitrary integers.
The the system

$$
\left\{\begin{array}{rlr}
x & \equiv a_{1} & \left(\bmod m_{1}\right) \\
x & \equiv a_{2} & \left(\bmod m_{2}\right)
\end{array}\right.
$$

has a unique solution modulo $m=m_{1} m_{2}$, namely $x \equiv a_{1} t m_{2}+a_{2} s m_{1}(\bmod m)$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1=s m_{1}+t m_{2}$, i.e., s og t are computed using the extended Euclidean algorithm.

Exercise 10:

Solve the following system of congruences

$$
\left\{\begin{array}{rlr}
x & \equiv 3 & (\bmod 5) \tag{2}\\
x & \equiv 2 \quad(\bmod 11)
\end{array}\right.
$$

Exercise 11:

Use the Method from Exercise 8 above (and Example 5 in Section 4.4) to solve this system of congruences:

$$
\left\{\begin{array}{l}
x \equiv 2 \quad(\bmod 7) \tag{3}\\
x \equiv 4 \quad(\bmod 9) \\
x \equiv 3 \quad(\bmod 13)
\end{array}\right.
$$

Read Secton 4.5 in Rosen's book.

Exercise 12:

Solve the following problems from Rosen, Section 4.5:

- Exercise 1: Which memory locations ...
- Exercise 5: What sequence of pseudorandom ...
- Exercise 11: The first nine digits of the ISBN-10 ...

Answers

- Ex. 1: 5.
- Ex. 2: 4.
- Ex. 3: 584.
- Ex. 4: The least non-negative solution is 8 . The complete set of solutions is $\{8+19 k \mid k \in \mathbb{Z}\}$.
- Ex. 5: The least non-negative solution is 3549 . The complete set of solutions is $\{3548+4627 k \mid k \in \mathbb{Z}\}$.
- Ex. 6: 1.
- Ex. 7: 3.
- 0pg. 8:

1. $\operatorname{gcd}(6,7)=\operatorname{gcd}(6,11)=\operatorname{gcd}(7,11)=1$.
2. $M_{1}=77, M_{2}=66, M_{3}=42$.
3. $y_{1}=5$
4. $y_{2}=5$
5. $y_{3}=5$
6. The least non-negative solution is 289 . The complete set of solutions is $\{289+462 k \mid k \in \mathbb{Z}\}$.

- Ex. 10: The least non-negative solution is 13. The complete set of solutions is $\{13+55 k \mid k \in \mathbb{Z}\}$.
- Ex. 11: The least non-negative solution is 562 . The complete set of solutions is $\{562+819 k \mid k \in \mathbb{Z}\}$.
- Ex. 12: See answers in Rosen.

