Session 1 \& 2
 Solutions to problems related to the exercises

Morten Grud Rasmussen

February 2, 2015

Converting degrees to radians

Figure S1.1: The unit circle with some angles illustrated.

In some exercises, you need to convert degrees to radians or vice versa. To do this, you need the "exchange rate." As 180° corresponds to π radians, namely half a round on the unit circle, the exchange rate from degrees to radians must be must be π radians per 180°, or $\frac{\pi}{180^{\circ}}$. Thus, if we want to convert 45° to radians, we get $45^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{45^{\circ}}{180^{\circ}} \pi=\frac{1}{4} \pi=\frac{\pi}{4}$. To go from radians to from radians to degrees, we just have to find the opposite exchange rate: 180° per π radians, or $\frac{180^{\circ}}{\pi}$. Thus, if we want to find $\frac{\pi}{5}$ radians in degrees, we just calculate $\frac{\pi}{5} \cdot \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{5}=36^{\circ}$.

Finding solutions to trigonometric equations

We now want to illustrate how to find solutions to trigonometric equations by solving $\cos (x)=1$. Remember that if θ is the (signed) angle between the positive x-axis and a half-line starting in $(0,0)$, then the half-line intersects the unit circle in the point $(\cos (\theta), \sin (\theta))$, i.e. cosine is the first coordinate of the point of intersection. So, when is $\cos (x)=1$? As can be seen in Figure S1.1, the only point on the unit circle whose first coordinate is 1 is the point $(1,0)$. Which angle does the half-line starting in $(0,0)$ and passing through $(1,0)$ have to the positive x-axis? Again, the answer can be read of in Figure S1.1. The answer is 0 radians (or 0°). This means that $\cos (x)=1$ has the solution $x=0$. Are there any other solutions? Well, what happens if you to an integer multiple of 2π around the unit circle - in positive or negative direction? You end up where you started! Since this covers all possible ways of ending up in $(1,0)$, all solutions to $\cos (x)=1$ are of the form $x=0+2 n \pi$, where n is an integer. We also write this as

$$
\cos (x)=1 \quad \Leftrightarrow \quad x=2 n \pi, n \in \mathbb{Z}
$$

where \mathbb{Z} is the standard notation for the set of integers. Note that $x=0$ is included as $0=2 \cdot 0 \cdot \pi$ and 0 is an integer.

A hint to the proof of the cosine addition formula

Figure S1.2: A sketch of the situation in Problem C.41.
If one wants to compare the lengths $|A C|$ and $|B D|$ of the two line segments $A C$ and $B D$, respectively, one first has to know how to calculate the length of a line segment between two points. To illustrate how to do this, we will now calculate the length $|A B|$ of the line segment $A B$. First, one subtracts the coordinates of A from the coordinates of $B:(1,0)-(\cos (\phi),-\sin (\phi))=$ $(1-\cos (\phi),-(-\sin (\phi)))=(1-\cos (\phi), \sin (\phi))$. Then we take the square root of the sum of squares of the two coordinates to get the length: $|A B|=\sqrt{(1-\cos (\phi))^{2}+\sin ^{2}(\phi)}$.

