Exam in Linear Algebra

First Year at The Faculty of Engineering and Science and The Technical Faculty of IT and Design

February 17, 2017, 9.00-13.00

This test has 9 pages and 14 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.

It is allowed to use books, notes, photocopies etc. It is **not** allowed to use any electronic devices such as pocket calculators, mobile phones or computers.

The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:	
STUDENT NUMBER:	

In all problems: there is only one correct answer to each question.

Problem 1 (9%)

Consider the matrices

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

and answer the following questions.

1.	Is <i>A</i> in row echelon form?	
	□ Yes	⊠ No
2.	Is <i>B</i> in row echelon form?	
	⊠ Yes	□No
3.	Is <i>A</i> in reduced row echelon form?	
	□ Yes	⊠ No
4.	Is <i>B</i> in reduced row echelon form?	
	□ Yes	⊠ No
5.	Can <i>B</i> be obtained from <i>A</i> by element	ary row operations?
	□ Yes	⊠ No
6.	Can <i>A</i> be obtained from <i>B</i> by element	ary row operations?
	□ Yes	⊠ No

Let $A = [\mathbf{a}_1 \ \mathbf{a}_2]$ be a matrix with 4 rows and let $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{b}_4 \ \mathbf{b}_5]$ be such that $C = AB$ is defined.					
1. How many rows are there in the matrix <i>B</i> ?					
⊠ 2	□ 3	\Box 4	□ 5		
2. How many rows are there in the matrix <i>C</i> ?					
□ 2	□ 3	oxtimes 4	□ 5		
Problem 3 (10 %)					
Let $A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$ and let $B = \frac{1}{5}A$.					
1. Answer the following true/false problems.					
A is an orthog	gonal matrix.	□ True	⊠ False		
B is an orthog	gonal matrix.	⊠ True	\square False		
A is a symme	tric matrix.	⊠ True	\Box False		
$B^{-1} = -B$		☐ True	⊠ False		
$B^{-1} = B$		⊠ True	\Box False		
2. What is the d	eterminant of <i>B</i> ?				

 $\boxtimes -1$ $\Box 0$

 \Box -5

□ 5

□ 2

3. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	be an eigen	vector of B w	vith eigenv	alue 1. V	What is the v	alue	
of x_1 if $x_2 =$	1.						
\Box -3	\Box -1	$\Box 0$		1	⊠ 3		
		Problem 4 (1	10 %)				
Let $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ has the following	$\begin{bmatrix} 2 & 1 \\ 4 & -1 \\ 2 & 1 \end{bmatrix}$ and reduced row	$d \mathbf{b} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$. T	he augmen	ited mati	$\operatorname{rix} \left[\begin{array}{cc} 1 & -1 \\ 2 & 1 \\ 1 & 1 \end{array} \right]$	$ \begin{array}{ccc} 2 & 1 \\ 4 & -1 \\ 2 & 1 \end{array} $	0 - 3 4 -
		$ \left[\begin{array}{ccccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] $	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$				
1. Answer the	following pro	oblems about	pivot colu	mns of 2	A:		
column 1 is a pivot column.			⊠ True □ False				
column 2 is a pivot column.			oximes True $oximes$ False				
column 3 is a pivot column.			□ True ⊠ False				
column 4 is a pivot column.			oximes True $oximes$ False				
2. What is the rank of <i>A</i> ?							
$\Box 0$	□1	□ 2	⊠ 3	\Box 4	□ 5		
3. What is the r	nullity of A?						
$\Box 0$	⊠ 1	□ 2		3	$\Box 4$		
4. Let x be a so \square 1 \square 2 \square 3 \square x_2 is a free		= b . What is	<i>x</i> ₂ ?				
		Page 4 of 0					

Page 4 of 9

Let
$$A = \begin{bmatrix} 2 & 3 & -5 \\ 4 & 5 & -3 \\ 1 & -3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -2 & 1 \\ 5 & 2 & 2 \end{bmatrix}$.

Let C = AB. What is the number c_{13} ?

- \Box -7
- $\boxtimes -5$
- \Box -3
- \square 8
- \Box 11

Problem 6 (10 %)

Let $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ and let $W = \operatorname{Span} \{ \mathbf{v} \}$. Let $\mathbf{u} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$ and let \mathbf{w} be the orthogonal projection of \mathbf{u} on W.

- 1. What is the third component of **w** (i.e. w_3)?
 - \Box -4
- \Box -2
- $\boxtimes -1$
- $\Box 0$
- $\Box 1$
- $\Box 4$
- 2. Let **z** be the orthogonal projection of **u** on W^{\perp} . What is the third component of **z** (i.e. z_3)?
 - \square -2
- \Box -1
- \square 2
- ⊠ 3
- $\Box 4$
- \Box 6

- 3. What is the dimension of W^{\perp} ?
 - $\Box 0$
- $\Box 1$
- \square 2
- ⊠ 3
- $\Box 4$
- \Box 5

Let *A* and *B* be 3×3 matrices with det A = 5 and det B = 3.

- 1. What is det(-2A)?
 - \Box -200
- \Box -50
- $\boxtimes -40$
- \Box -10
- \Box 5
- $\Box 40$

- 2. What is $\det AB^T$?
 - \square 2
- \square 3
- \Box 5
- $\boxtimes 15$
- $\square \frac{3}{5}$
- $\Box \frac{5}{3}$

- 3. What is $\det AB^{-1}$?
 - $\Box 1$
- $\Box \frac{1}{15}$
- $\square \frac{3}{5} \qquad \boxtimes \frac{5}{3}$
- \square 2
- \Box 15

Problem 8 (10 %)

The characteristic polynomial of $A = \begin{bmatrix} -8 & 4 & -2 & 10 \\ 0 & -1 & 0 & 0 \\ 2 & -2 & 0 & -2 \\ -7 & 4 & -2 & 9 \end{bmatrix}$ is $t(t-2)(t+1)^2$.

- 1. Which one of the following is an eigenvalue of *A*?
 - \square -2
- $\boxtimes -1$
- $\Box 1$
- $\Box 4$
- 2. Which one of the following is an eigenvector of *A*?
- $\begin{array}{c|cccc}
 & 1 & & & & |1 & & \\
 1 & & & & |0 & & \\
 0 & & & & |1 & \\
 0 & & & & |1 & \\
 \end{array}$

- 3. Is *A* invertible?
 - ☐ Yes

⊠ No

Page 6 of 9

Problem 9 (4 %)

Let

$$A = \begin{bmatrix} 2 & 4 & 1 & 2 \\ 2 & 4 & 1 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

What is the determinant of *A*?

- □ 12
- \Box 10
- $\boxtimes 5$
- $\Box 0$
- \square -5
- \Box -10
- \Box -12

Problem 10 (4 %)

What is the number of solutions of the following system of linear equations

$$x_1 - x_2 + x_4 = 0$$

$$x_1 - x_2 + x_3 + x_4 = 0$$

$$-x_1 + x_2 - x_4 = 1$$

- $\boxtimes 0$
- \square 1
- \square infinitely many.

Problem 11 (6%)

Let *T* be the linear transformation with standard matrix $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$.

$$\mathcal{B}=\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}-2\\1\end{bmatrix}\} \text{ is a basis for } \mathcal{R}^2.$$

Which one of the following is the matrix representation of T with respect to \mathcal{B} , denoted by $[T]_{\mathcal{B}}$?

- $\Box \begin{bmatrix} -18 & -7 \\ 4 & 11 \end{bmatrix} \qquad \boxtimes \begin{bmatrix} 11 & -18 \\ 4 & -7 \end{bmatrix} \qquad \Box \begin{bmatrix} 4 & 11 \\ -7 & -18 \end{bmatrix} \qquad \Box \begin{bmatrix} -7 & 4 \\ 11 & -18 \end{bmatrix}$

Problem 12 (10%)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation with standard matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

1.	What is the v	ralue of n ?					
	□ 2	⊠ 3	$\Box 4$		□ 5		□ 6
2.	What is the v	ralue of <i>m</i> ?					
	□ 2	□ 3	$\Box 4$		⊠ 5		□ 6
3.	What the ran	k of <i>A</i> ?					
	□ 2	⊠ 3		$\Box 4$			5
4.	What is the d	limension of	f the null spa	ce of T?			
	$\boxtimes 0$	□1	□ 2	□ 3		□ 4	□ 5
5.	Is T one-to-or	ne?					
	⊠ Yes			□No			
6.	Is T onto?						
	□ Yes			⊠ No			

Problem 13 (6%)

Let
$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
 and let $\mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.

- 1. Is **b** contained in Col *A*?
- ⊠ Yes
- □ No

- 2. Is **c** contained in Col *A*?
- \square Yes
- \boxtimes No

- 3. Is **b** contained in Null *A*?
- ☐ Yes
- ⊠ No

- 4. Is **c** contained in Null *A*?
- ⊠ Yes
- \square No

Problem 14 (7%)

The following commands are entered in the MATLAB Command Window:

- >> A = [1 1 1 1; 1 2 3 4; 0 1 0 1; 0 0 0 1];
- >> b = [1; 0; 1; 2];
- >> T = [A b];
 - 1. What is the size of the matrix *T* ?
 - \Box 1 × 20
- $\square 2 \times 16$
- \Box 4 imes 4
- $\boxtimes 4 \times 5$
- \square 5 × 4
- 2. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} . Which one of the following combinations of MATLAB commands computes \mathbf{x} ?
 - $\square >> R = rref(A); x = R(:,4)$
 - $\square \gg R = rref(A); x = R(5,:)$
 - $\square >> R = rref(T); x = R(:,4)$
 - $\boxtimes >> R = rref(T); x = R(:,5)$
 - $\square \gg R = rref(T); x = R(5,:)$

Page 9 of 9