	Note on QR -faktorization.
	2014
LINEÆR ALGEBRA	LISBETH FAJSTRUP

QR-factorization

The purpose of this note is to explain QR-factorization. The point of departure is SIF, the chapter on Orthogonality, the section on Orthogonal vecotrs (6.2 eller 7.2), Let A be an $m \times n$ matrix such that the column vectors of A are linearly independent. There is an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

The argument for this, and the algorithm to find Q and R is via the Gram Schmidt algorithm and goes as follows: Let the columns of A be $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$.

The Gram Schmidt procedure, which finds an orthogonal basis $\mathbf{v}_1, \ldots \mathbf{v}_n$ with the same span as $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$, is:

- $\mathbf{v}_1 = \mathbf{a}_1$,
- $\mathbf{v}_2 = \mathbf{a}_2 \frac{\mathbf{a}_2 \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1$ (the projection of \mathbf{a}_2 on \mathbf{v}_1 is subtracted from \mathbf{a}_2),
- $\mathbf{v}_3 = \mathbf{a}_3 \left(\frac{\mathbf{a}_3 \cdot \mathbf{v}_2}{|\mathbf{v}_2|^2} \mathbf{v}_2 + \frac{\mathbf{a}_3 \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1\right)$ (the projection of \mathbf{a}_3 on span($\mathbf{v}_1, \mathbf{v}_2$) is subtracted from \mathbf{a}_3).
- In general $\mathbf{v}_j = \mathbf{a}_j \left(\frac{\mathbf{a}_j \cdot \mathbf{v}_{j-1}}{|\mathbf{v}_{j-1}|^2} \mathbf{v}_{j-1} + \frac{\mathbf{a}_j \cdot \mathbf{v}_{j-2}}{|\mathbf{v}_{j-2}|^2} \mathbf{v}_{j-2} + \dots + \frac{\mathbf{a}_j \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1\right)$

The columns of the matrix Q are $\mathbf{q}_j = \frac{1}{|\mathbf{v}_j|}\mathbf{v}_j$. They are orthogonal, since this is what comes out of the Gram-Schmidt proces.

From the general expression for \mathbf{v}_i we get

$$\mathbf{a}_{j} = \mathbf{v}_{j} + (\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-1}}{|\mathbf{v}_{j-1}|^{2}} \mathbf{v}_{j-1} + \frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-2}}{|\mathbf{v}_{j-2}|^{2}} \mathbf{v}_{j-2} + \dots + \frac{\mathbf{a}_{j} \cdot \mathbf{v}_{1}}{|\mathbf{v}_{1}|^{2}} \mathbf{v}_{1})$$

In particular, \mathbf{a}_i is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_i$ and hence of $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_i$.

$$\mathbf{a}_{j} = |\mathbf{v}_{j}|\mathbf{q}_{j} + (\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-1}}{|\mathbf{v}_{j-1}|}\mathbf{q}_{j-1} + \frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-2}}{|\mathbf{v}_{j-2}|}\mathbf{q}_{j-2} + \dots + \frac{\mathbf{a}_{j} \cdot \mathbf{v}_{1}}{|\mathbf{v}_{1}|}\mathbf{q}_{1})$$

It follows that A = QR, where R is upper triangular and $r_{ij} = \frac{\mathbf{a}_j \cdot \mathbf{v}_i}{|\mathbf{v}_i|}$. In particular, the diagonal entrances are $r_{ii} = |\mathbf{v}_i|$, since $\mathbf{a}_i \cdot \mathbf{v}_i = \mathbf{v}_i \cdot \mathbf{v}_i$ because of orthogonality.