QR-factorization

The purpose of this note is to explain QR-factorization. The point of departure is SIF, the chapter on Orthogonality, the section on Orthogonal vecotrs (6.2 eller 7.2), Let A be an $m \times n$ matrix such that the column vectors of A are linearly independent. There is an orthogonal matrix Q and an upper triangular matrix R such that $A=Q R$.

The argument for this, and the algorithm to find Q and R is via the Gram Schmidt algorithm and goes as follows: Let the columns of A be $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$.

The Gram Schmidt procedure, which finds an orthogonal basis $\mathbf{v}_{1}, \ldots \mathbf{v}_{n}$ with the same span as $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$, is:

- $\mathbf{v}_{1}=\mathbf{a}_{1}$,
- $\mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}$ (the projection of \mathbf{a}_{2} on \mathbf{v}_{1} is subtracted from \mathbf{a}_{2}),
- $\mathbf{v}_{3}=\mathbf{a}_{3}-\left(\frac{\mathbf{a}_{3} \cdot \mathbf{v}_{2}}{\left|\mathbf{v}_{2}\right|^{2}} \mathbf{v}_{2}+\frac{\mathbf{a}_{3} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}\right)$ (the projection of \mathbf{a}_{3} on $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ is subtracted from \mathbf{a}_{3}).
- In general $\mathbf{v}_{j}=\mathbf{a}_{j}-\left(\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-1}}{\left|\mathbf{v}_{j-1}\right|^{2}} \mathbf{v}_{j-1}+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-2}}{\left|\mathbf{v}_{j-2}\right|^{2}} \mathbf{v}_{j-2}+\cdots+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}\right)$

The columns of the matrix Q are $\mathbf{q}_{j}=\frac{1}{\left|\mathbf{v}_{j}\right|} \mathbf{v}_{j}$. They are orthogonal, since this is what comes out of the Gram-Schmidt proces.

From the general expression for \mathbf{v}_{j} we get

$$
\mathbf{a}_{j}=\mathbf{v}_{j}+\left(\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-1}}{\left|\mathbf{v}_{j-1}\right|^{2}} \mathbf{v}_{j-1}+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-2}}{\left|\mathbf{v}_{j-2}\right|^{2}} \mathbf{v}_{j-2}+\cdots+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}\right)
$$

In particular, \mathbf{a}_{j} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{j}$ and hence of $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{j}$.

$$
\mathbf{a}_{j}=\left|\mathbf{v}_{j}\right| \mathbf{q}_{j}+\left(\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-1}}{\left|\mathbf{v}_{j-1}\right|} \mathbf{q}_{j-1}+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{j-2}}{\left|\mathbf{v}_{j-2}\right|} \mathbf{q}_{j-2}+\cdots+\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|} \mathbf{q}_{1}\right)
$$

It follows that $A=Q R$, where R is upper triangular and $r_{i j}=\frac{\mathbf{a}_{j} \cdot \mathbf{v}_{i}}{\left|\mathbf{v}_{i}\right|}$. In particular, the diagonal entrances are $r_{i i}=\left|\mathbf{v}_{i}\right|$, since $\mathbf{a}_{i} \cdot \mathbf{v}_{i}=\mathbf{v}_{i} \cdot \mathbf{v}_{i}$ because of orthogonality.

