Exam in Discrete Mathematics

First Year at The TEK-NAT Faculty June 10th, 2016, 9.00-13.00

This exam consists of 11 numbered pages with 16 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.

It is allowed to use books, notes, photocopies etc. It is not allowed to use any electronic devices such as pocket calculators, mobile phones or computers.

The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:	
COUDENCE NUMBER	
STUDENT NUMBER:	

There is only one correct answer to each question.

Problem 1 (8 %)

Consider the following linear homogeneous recurrence relation

1. What is the degree of this recurrence relation?

$$a_n = -a_{n-1} + 6a_{n-2}.$$

	□ −1	□ 0	$\boxtimes 2$	□ 6	
2.	Which of the fol are constants)?	lowing is the so	olution of this recurre	nce relation (α_1 as	$1d \alpha_2$

 $\Box a_n = \alpha_1(-2)^n + \alpha_2 \cdot 3^n$ $\Box a_n = \alpha_1(-1)^n + \alpha_2 \cdot 6^n$

 $\square \ a_n = \alpha_1 + \alpha_2(-6)^n$ \times \alpha_n = \alpha_1 \cdot 2^n + \alpha_2(-3)^n

Problem 2 (5 %)

Consider the following algorithm:

 $\begin{aligned} & \textbf{procedure} \ \textit{multiplications}(n: \ \textit{positive integer}) \\ & t := 1 \\ & \textbf{for} \ i := 1 \ \textbf{to} \ n \\ & \textbf{for} \ j := 1 \ \textbf{to} \ i \\ & t := 2 \cdot t \end{aligned}$

The number of multiplications used by this algorithm is

 $\square \ O(n) \qquad \qquad \square \ \Theta(n) \qquad \qquad \square \ O(n\sqrt{n}) \qquad \boxtimes \ O(n^2) \qquad \qquad \square \ \Omega(n^3)$

Prob.	lem	3	(5	9%)
T TOD.	ICIII	J	U	70.

Which one of th	ne following numb	ers is an inverse o	f 43 modulo 10	00?
\Box -3	⊠ 7	□ 17] 27
	P	roblem 4 (9 %)		
Consider the fol	lowing algorithm:			
procedure $i := 0$ x := n s := 0 while $i < n$ i := i + 1 s := s + i x := x - 1 return s		ive integer)		
in this alg $\Box i \leq n$ $\Box i \leq n$ $\boxtimes i \leq n$ $\Box i \leq n$	orithm?	$ \begin{array}{ll} -1) & \wedge & i+x=n \\ & \wedge & i+x=n \\ -1) & \wedge & x-i=n \end{array} $,	or the while loop
2. What is the	ne value of s return	rned by procedure	additions?	
$\square n^2$	$\Box (n +$	$(1)^2 \qquad \boxtimes n(n)$	(n+1)	$\square n^2 - n$

Problem 5 (6%)

What is value of $(79 + 778 + 7777 \cdot 321) \mod 7$?						
$\square 0$	□ 1	$\square \ 2$	$\boxtimes 3$	\Box 4	\Box 5	\Box 6
		Р	roblem 6	(8 %)		
Let $P(n)$	be the follo	wing statem	nent about t	the absolute	value of real	l numbers
$ x_1 + x_2 $	$x + \ldots + x_n$	$\leq x_1 + x_2 $	$ x + \ldots + x $	c_n , for all re-	eal numbers	$x_1,\ldots,x_n.$
				know that P true for all		
Which on	e of the foll	owing is a c	orrect outli	ne of the inc	ductive step?	ı
Then use			` '	$ x_1 + x_2 + \dots$	$+x_{k+1}$ and	the induction
Then use			` '	$x_2 + \ldots + x_{k-1}$	$ x_1 + x_k $ and	the induction
Then use			` '	$x_2 + \ldots + x_k$	$+ x_{k+1} $ and	the induction
Then use				$x_2 + \ldots + x_k$	$_{+1}$ and the i	induction hy-
Then use					$+ x_{k+1} $ and	the induction

Problem 7 (9%)

Consider the following two relations on the set $A = \{1, 2, 3, 4, 5\}$:

$$R = \{(1,1), (1,2), (2,3), (3,4), (4,5), (5,5)\}$$

$$S = \{(1,2), (1,3), (2,1), (3,1), (3,4), (3,5), (4,3), (4,4), (5,3)\}.$$

	~ ((-)	-); (-; -); (-;	-); (=; -); (=; -), (=, =), (-, -, , (-, -, ,	(0,0)).
1.	Answer the fe	ollowing true	e/false problem	ms:		
	R is reflexive			□ True		⊠ False
	R is antisymi	metric		⊠ True		\square False
	S is symmetr	ric		⊠ True		\square False
	S is transitive	e		□ True		⊠ False
2.	Which one of relation $R \circ S$		g values of x s	satisfies t	hat $(5, x)$ is	in the compose
	\Box 1	$\square \ 2$	$\square 3$		$\boxtimes 4$	\Box 5
3.	Which one of relation $S \circ I$		g values of x s	satisfies t	hat $(5, x)$ is	in the compose
	\Box 1	\square 2	$\boxtimes 3$		\Box 4	\Box 5
4.	Let R^* denote in R^* ?	te the transit	cive closure of	f S. How	many pair	rs (a, b) are then
	\Box 6	\square 9	\Box 10		$\square 20$	\Box 25
	Note: There R , not of S . The transitiv The transitiv 12 and 25 will	e closure of a	R has 12 pair S has 25 pairs	S.		nsitive closure o

Page 5 of 11

Problem 8	(7 %)
-----------	-------

A graph G with vertices v_1, v_2, \dots, v_7 has adjacency matrix

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

1. Answer the following true/false problems.										
G has an Euler circuit						⊠ Tru	ıe		False	
	G has a	Hamilt	on circ	uit		□ Tru	ıe	\boxtimes	False	
	G has a	Hamilt	on path	1		\square True \boxtimes False			False	
2.	2. What is the length of the shortest simple circuit in G ?									
\Box 1 \Box 2 \Box 3 \boxtimes 4 \Box 5 \Box 6						\Box 6		7		
3. What is the number of edges of a spanning tree of G ?										
						□ 8	\square 9			
	Problem 9 (4 %)									
Whic	ch one of	the foll	owing p	oropositi	ions is ec	quivaler	it to $\forall x$	$(P(x) \land$	$\neg Q(x)$?
□ -	$\forall x (P(x))$ $\forall x (\neg P(x))$ $\forall x (\neg P(x))$ $x (\neg P(x))$	$(x) \lor Q(x)$ $(x) \land Q(x)$	(c)) (c))							

Page 6 of 11

Problem 10 (4 %)

Answer the following problems about	numbers of permutat	ions and combinations.
$\forall n \forall r (P(n,r) = P(n,n-r))$	\square True	\boxtimes False
$\forall n \forall r (C(n,r) = C(n,n-r))$	⊠ True	\square False
$\forall n \forall r (P(n,r) = C(n,r) \cdot r!)$	⊠ True	\square False
$\forall n \forall r (C(n+1,r+1) = C(n,r))$	\square True	\boxtimes False
Proble	em 11 (4 %)	
Consider the following statements:		
Statement 1: If it is Sunday then it	is sunshine.	
Statement 2: If it is not Sunday the	en it is not sunshine.	
Statement 3: If it is sunshine then	it is Sunday.	
Statement 4: If it is not sunshine the	hen it is not Sunday.	
What is the contrapositive of Stateme	ent 1?	
\square Statement 1 \square Statement 2	☐ Statement 3	⊠ Statement 4

Problem 12 (6 %)

Let $A = \{\emptyset, 2\}$	$, \{1, 2\}\}$	and $B =$	$\{a, \{\emptyset\},$	$1, 2, 3$ } b	e sets.			
1. What is	s the care	dinality of	of $A \cap B$?				
$\Box 0$	$\boxtimes 1$	$\square 2$	$\square 3$	\square 4	\Box 5	\Box 6	\Box 7	□ 8
2. What is	s the care	dinality of	of $A \cup B$?				
$\Box 0$	$\Box 1$	\square 2	$\square 3$	$\Box 4$	\square 5	\Box 6	$\boxtimes 7$	□ 8
3. Which of	one of th	e followi	ng is an	element o	of $A \times B$?		
$\boxtimes (2,1)$	$\boxtimes (2,1)$ $\Box (1,2)$				$\{1,2\}$		$\square\ (\emptyset,\emptyset)$	
4. Which one of the following is an element of the power set $\mathcal{P}(A)$?								
$\square \ \{ \{\emptyset \}$	$\square \ \{\{\emptyset\}\} \qquad \qquad \square \ \{1,2\}$			$\boxtimes \{\{1,2\}\}$			$\square \ \{\emptyset,1\}$	
			Probler	n 13 (4	%)			
1. What is □ 6 □ 30 ⋈ 120	s the valu	ne of $P(6)$	5,3)?					
□ 720 2. What is □ 15 □ 20 □ 35 □ 210	s the valu	ne of $C(7)$	7,3) ?					

Problem 14 (6 %)

Let $f(x) = (2x+3)(x^3-5x+1)$. Answer the following true/false problems. 1. f(x) is $O(x^3)$ □ True ⊠ False 2. f(x) is $O(x^4)$ ⊠ True \square False 3. f(x) is $O(x^5)$ ⊠ True \square False 4. f(x) is $\Omega(x^3)$ ⊠ True \square False 5. f(x) is $\Omega(x^4)$ ⊠ True \square False 6. f(x) is $\Omega(x^5)$ ☐ True ⊠ False 7. f(x) is $\Theta(x^3)$ \square True ⊠ False 8. f(x) is $\Theta(x^4)$ ⊠ True \square False 9. f(x) is $\Theta(x^5)$ \Box True ⊠ False **Problem 15** (10 %) In this problem we use Dijkstra's algorithm (see Figure 2) on the graph in Figure 1. 1. What is the length of the shortest path from a to z (found by Dijkstra's algorithm)? $\boxtimes 8$ \square 9 \Box 6 \Box 7 \Box 14 2. In what order are vertices added to the set S? $\Box a, v_1, v_2, v_5, v_8$ $\square \ a, v_1, v_4, v_5, v_8$ $\boxtimes a, v_1, v_3, v_2, v_4, v_6, v_7, v_5, v_8$ $\Box a, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$

Page 9 of 11

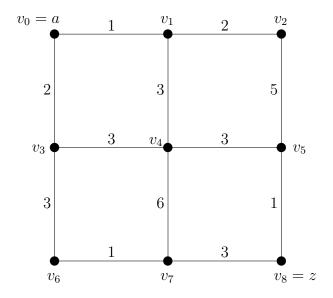


Figure 1: The graph G, considered in problems 15 and 16.

Problem 16 (5 %)

What is the weight of a minimum spanning tree of the graph in Figure 1. $\square \ 9 \qquad \square \ 11 \qquad \square \ 12 \qquad \square \ 13 \qquad \square \ 14 \qquad \square \ 15 \qquad \boxtimes \ 16 \qquad \square \ 18$

```
procedure Dijkstra(G: weighted connected simple graph, with
     all weights positive)
{G has vertices a = v_0, v_1, \dots, v_n = z and lengths w(v_i, v_j)
     where w(v_i, v_j) = \infty if \{v_i, v_j\} is not an edge in G\}
for i := 1 to n
     L(v_i) := \infty
L(a) := 0
S := \emptyset
{the labels are now initialized so that the label of a is 0 and all
     other labels are \infty, and S is the empty set}
while z \notin S
     u := a vertex not in S with L(u) minimal
     S := S \cup \{u\}
     for all vertices v not in S
           if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
           {this adds a vertex to S with minimal label and updates the
           labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}
```

Figure 2: