Answers to Exam in Discrete Mathematics

First Year at The TEK-NAT Faculty

June 15th, 2015, 9.00-13.00

Part I: ("Regular exercises")

Exercise 1 (8\%)

A sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ of integers is defined recursively by

$$
\begin{aligned}
& a_{0}=1, \\
& a_{n+1}=2 a_{n}-n, \text { for all } n \geq 0 .
\end{aligned}
$$

Prove by induction that $a_{n}=n+1$ for all $n \geq 0$.

Answer:

Basis step: Prove that the statement is true for $n=0$.
Inductive step: Let $k \geq 0$ and assume that $a_{k}=k+1$.
Then $a_{k+1}=2 a_{k}-k=2(k+1)-k=(k+1)+1$, using first the recursive definition of a_{k+1} and then the inductive hypothesis.
It follows that if the statement is true for $n=k$ then it is also true for $n=k+1$.
And then by mathematical induction, $a_{n}=n+1$ for all $n \geq 0$.

Exercise 2 (9\%)

Consider the following algorithm.

```
procedure sum(n: positive integer)
i:=1
x:=1
s:=1
while}i<
    i:=i+1
    x:=x+2
    s:=s+x
return }
```

1. Prove that the following assertion is a loop invariant for the while-loop:

$$
\begin{equation*}
i \in \mathbb{N} \wedge i \leq n \wedge x=2 i-1 \wedge s=i^{2} \tag{1}
\end{equation*}
$$

2. What is the value of s in terms of n when the algorithm terminates? Justify your answer.

Answer:

Suppose that (1) is true and the condition $i<n$ is true before some iteration of the while loop. Then

```
\(i_{\text {new }}=i+1 \in \mathbb{N}\) and \(i_{\text {new }} \leq n\),
\(x_{\text {new }}=x+2=2 i-1+2=2 i+1=2(i+1)-1=2 i_{\text {new }}-1\), and
\(s_{\text {new }}=s+x_{\text {new }}=i^{2}+2 i+1=(i+1)^{2}=i_{\text {new }}^{2}\).
```

We see that (1) is also true after the iteration of the while loop, and so (1) is a loop invariant.

Before the first iteration of the while loop, we have

```
\(i=1 \in \mathbb{N}\),
\(i=1 \leq n\), as \(n\) is a positive integer,
\(x=1=2 i-1\), and
\(s=1=i^{2}\).
```

We see that (1) is true before while. Since (1) is a loop invariant, it is also true after the last iteration of while.

We the algorithm terminates we have:
The condition $i<n$ is false, otherwise the loop would continue.
$i \leq n$ is true, as it is part of (1).
Therefore $i=n$. We also have from (1) that $s=i^{2}$.
It follows that $s=n^{2}$ when the algorithm terminates.

Part II: ("Multiple choice" exercises)

There is only one correct answer to each question.

Exercise 3 (3\%)

Using the extended Euclidean algorithm we find that

$$
\operatorname{gcd}(258,369)=-10 \cdot 258+7 \cdot 369=3
$$

Which one of the following statements is true?-10 is an inverse of 258 modulo 369.is an inverse of 258 modulo 369.7 is an inverse of 258 modulo 369.
$\boxtimes 258$ has no inverse modulo 369 .

Exercise 4 (4\%)

Which one of the following sets is not countable?
The set of prime numbers
$\boxtimes\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$\mathbb{Z} \times \mathbb{Z}$
$\{x \in \mathbb{Q} \mid-3 \leq x \leq \sqrt{2}\}$

Exercise 5 (4\%)
Which one of the following propositions is equivalent to $\forall x \exists y P(x, y)$?$\forall y \exists x P(x, y)$$\exists x \forall y P(x, y)$
$\boxtimes \forall y \exists x P(y, x)$$\exists y \forall x P(x, y)$

Exercise 6 (8\%)

Consider the Merge Sort algorithm on page 360 in [Rosen, Discrete Mathematics and its Applications, Seventh Edition, Global Edition] using procedure merge on page 361.
Let $P(x, y)$ denote the statement: "if we use Merge Sort and procedure merge to sort the list

$$
5,2,7,3,6,1,9,4
$$

then at some step we will directly compare x and y." What is the truth value of each of the following propositions:
a. $P(3,6)$
True
『
False
b. $P(3,4)$
\boxtimes TrueFalse
c. $P(2,7)$True
\boxtimes
False
d. $P(1,4)$
\boxtimes True
False

Exercise 7 (5\%)
a. The propositions $r \rightarrow s$ and $\neg r \vee s$ are equivalent.
\boxtimes True
False
b. How many rows appear in a truth table of the compound proposition

$$
p \vee \neg q \leftrightarrow \neg p \vee q
$$

12
3
『 46 8
c. In how many rows in this truth table is the truth value of $p \vee \neg q \leftrightarrow \neg p \vee q$ "true (T)" ?0
1
$\boxtimes 2$
2
3
4
5
d. $p \vee \neg q \leftrightarrow \neg p \vee q$ is a tautology.True

\boxtimes False

Exercise 8 (3\%)

Which rule of inference is used in the following argument:
"If it is Valdemar's day then there are flags on the buses. It is Valdemar's day. Therefore, there are flags on the buses."Conjunction
Modus tollens
\boxtimes Modus ponensUniversal generalization

Exercise 9 （4\％）

Consider the following set of integers

$$
S=\{x \mid 0 \leq x<280 \wedge x \equiv 3 \quad(\bmod 7) \wedge x \equiv 4 \quad(\bmod 8)\}
$$

How many integers are there in S ？
0
1
2
『 510
280

Exercise 10 （5\％）

Let $(x-y)^{5}=a x^{5}+b x^{4} y+c x^{3} y^{2}+d x^{2} y^{3}+e x y^{4}+f y^{5}$ ，where a, b, c, d, e, f are integers．
a．One has that $b=e$YES
$\boxtimes \mathrm{NO}$
b．One has that d is equal to
51020-5
『 -10-20

Let $(3 x+2 y)^{3}=g x^{3}+h x^{2} y+i x y^{2}+j y^{3}$ ，where g, h, i, j are integers．
c．One has that h is equal to
6182736
『 5481

Exercise 11 (7\%)

Let $A=\{1,2,3,4,5\}$ be a set. Consider the following two relations on A

$$
\begin{gathered}
S=\{(1,1),(1,2),(1,4),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,1),(4,3),(4,4)\} \\
R=\{(2,1),(2,3),(4,1),(4,3),(4,4),(4,5),(5,1)\}
\end{gathered}
$$

Answer the following true/false exercises:
a. R is transitive
\boxtimes True
b. R is reflexiveTrue
\boxtimes False
c. S is an equivalence relationTrueFalse
d. $(1,3)$ is in the transitive closure of S
® TrueFalse
e. $(2,5)$ is in the transitive closure of S
True
区
False
f. $(3,5)$ is in the composed relation $R \circ S$
\boxtimes TrueFalse
g. $(3,5)$ is in the composed relation $S \circ R$True
False

Exercise 12 (7\%)

$(111 \cdot 11113+1111115) \bmod 11$ is equal to
0
12
घ 83
4
5
69
10

Exercise 13 (9\%)

Let $f(x)=(x \log x+5 x)\left(x^{2}+3 x-4\right)$, for $x>0$.
Answer the following 6 true/false exercises.
a. $f(x)$ is $O\left(x^{3}\right)$
『
False
b. $f(x)$ is $O\left(x^{4}\right)$
\boxtimes TrueFalse
c. $f(x)$ is $O\left(x^{3} \log x\right)$
\boxtimes TrueFalse
d. $f(x)$ is $\Theta\left(x^{3} \log x\right)$
\boxtimes True
e. $f(x)$ is $\Omega\left(x^{3}\right)$
\boxtimes True
f. $f(x)$ is $O\left(x^{2} \log x\right)$
True

Exercise 14 (6\%)

Let $f(x)=3 x^{3}+2 x+4$. One has that $f(x)$ is $O\left(x^{3}\right)$.
a. $(C, k)=(10,0)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.True
\boxtimes False
b. $(C, k)=(6,1)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.
\boxtimes False
c. $(C, k)=(9,1)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.
\boxtimes True
False
d. $(C, k)=(12,1)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.
\boxtimes TrueFalse
e. $(C, k)=(3,2)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.

True

\boxtimes False
f. $(C, k)=(5,2)$ can be used as witnesses to show that $f(x)$ is $O\left(x^{3}\right)$.

- True
False

Figur 1：The graph G considered in Exercises 16 and 17.

Exercise 15 （6\％）

Let $A=\{\varnothing, 1,2,3,4\}$ and $B=\{\{\varnothing\}, 2,4,6\}$ be sets．
1．What is the cardinality of $A \cap B$ ？
囚 2
34567 8

2．What is the cardinality of $A \cup B$ ？2

34

56
区 7

8

3．What is the cardinality of $A \times B$ ？
12
1516
《 20
25

30

4．Which one of the following is an element of $A \times B$ ？$\{\varnothing, \varnothing\}$$(\varnothing, \varnothing)$
$\boxtimes(\varnothing,\{\varnothing\})$$(\{\varnothing\}, 6)$

Consider the graph G in Figure 1.
Answer the following true/false questions.
a. G is a simple graph.
\boxtimes True
b. G is connected.
® TrueFalse
c. G has an Euler circuit.
\boxtimes True
d. G has a Hamilton circuit.
True
e. G has a Hamilton path.
\boxtimes True
\boxtimes False
False

Exercise 17 （6\％）

Consider again the graph G in Figure 1.
a．What is degree of the vertex v
1
23
『 45
6
b．What is the largest number of vertices in a complete subgraph of G1
2
3
『 4
5
6
c．What is the length of a shortest simple circuit of G12
『 34
56
d．What is the number of edges in a spanning tree of G
01
6
囚 7

8

