Answers to Exam in Discrete Mathematics

First Year at The TEK-NAT Faculty

June 15th, 2015, 9.00-13.00

Part I: ("Regular exercises")

Exercise 1 (8%)

A sequence $a_0, a_1, a_2, a_3, \ldots$ of integers is defined recursively by

 $a_0 = 1,$ $a_{n+1} = 2a_n - n$, for all $n \ge 0$.

Prove by induction that $a_n = n + 1$ for all $n \ge 0$.

Answer:

Basis step: Prove that the statement is true for n = 0. Inductive step: Let $k \ge 0$ and assume that $a_k = k + 1$. Then $a_{k+1} = 2a_k - k = 2(k+1) - k = (k+1) + 1$, using first the recursive definition of a_{k+1} and then the inductive hypothesis. It follows that if the statement is true for n = k then it is also true for n = k + 1. And then by mathematical induction, $a_n = n + 1$ for all $n \ge 0$.

Exercise 2 (9%)

Consider the following algorithm.

```
procedure sum(n: positive integer)

i := 1

x := 1

s := 1

while i < n

i := i + 1

x := x + 2

s := s + x

return s
```

1. Prove that the following assertion is a loop invariant for the while-loop:

$$i \in \mathbb{N} \land i \le n \land x = 2i - 1 \land s = i^2.$$
(1)

2. What is the value of *s* in terms of *n* when the algorithm terminates? Justify your answer.

Answer:

Suppose that (1) is true and the condition i < n is true before some iteration of the while loop. Then

 $i_{\text{new}} = i + 1 \in \mathbb{N} \text{ and } i_{\text{new}} \le n,$ $x_{\text{new}} = x + 2 = 2i - 1 + 2 = 2i + 1 = 2(i + 1) - 1 = 2i_{\text{new}} - 1,$ and $s_{\text{new}} = s + x_{\text{new}} = i^2 + 2i + 1 = (i + 1)^2 = i_{\text{new}}^2.$

We see that (1) is also true after the iteration of the while loop, and so (1) is a loop invariant.

Before the first iteration of the while loop, we have

 $i = 1 \in \mathbb{N},$ $i = 1 \le n$, as *n* is a *positive* integer, x = 1 = 2i - 1, and $s = 1 = i^2$.

We see that (1) is true before while. Since (1) is a loop invariant, it is also true after the last iteration of while.

We the algorithm terminates we have:

The condition i < n is false, otherwise the loop would continue.

 $i \leq n$ is true, as it is part of (1).

Therefore i = n. We also have from (1) that $s = i^2$.

It follows that $s = n^2$ when the algorithm terminates.

Part II: ("Multiple choice" exercises)

There is only one correct answer to each question.

Exercise 3 (3%)

Using the extended Euclidean algorithm we find that

 $gcd(258, 369) = -10 \cdot 258 + 7 \cdot 369 = 3.$

Which one of the following statements is true?

- \Box -10 is an inverse of 258 modulo 369.
- \Box is an inverse of 258 modulo 369.
- $\hfill\square$ 7 is an inverse of 258 modulo 369.
- $\boxtimes~258$ has no inverse modulo 369.

Exercise 4 (4%)

Which one of the following sets is *not* countable?

 $\Box \quad \text{The set of prime numbers} \\ \boxtimes \quad \{x \in \mathbb{R} \mid 0 \le x \le 1\} \\ \Box \quad \mathbb{Z} \times \mathbb{Z} \\ \Box \quad \{x \in \mathbb{Q} \mid -3 \le x \le \sqrt{2}\} \\ \end{cases}$

Exercise 5 (4%)

Which one of the following propositions is equivalent to $\forall x \exists y P(x, y)$?

 $\Box \quad \forall y \exists x P(x,y) \qquad \Box \quad \exists x \forall y P(x,y) \qquad \boxtimes \quad \forall y \exists x P(y,x) \qquad \Box \quad \exists y \forall x P(x,y)$

Exercise 6 (8%)

Consider the Merge Sort algorithm on page 360 in [Rosen, Discrete Mathematics and its Applications, Seventh Edition, Global Edition] using procedure *merge* on page 361.

Let P(x, y) denote the statement: "if we use Merge Sort and procedure merge to sort the list

5, 2, 7, 3, 6, 1, 9, 4

then at some step we will directly compare *x* and *y*." What is the truth value of each of the following propositions:

a.	<i>P</i> (3,6)		
	□ True	\boxtimes	False
b.	<i>P</i> (3,4)		
	⊠ True		False
c.	<i>P</i> (2,7)		
	□ True	\boxtimes	False
d.	P(1,4)		
	⊠ True		False

Exercise 7 (5%)

- a. The propositions $r \to s$ and $\neg r \lor s$ are equivalent.
 - \boxtimes True \Box False

b. How many rows appear in a truth table of the compound proposition

					$p \lor \neg q \leftrightarrow$	$\neg p$	$v \lor q$				
		1	□ 2		3	\boxtimes	4		6		8
c.	In h "tru	ow many le (T)" ?	rows in thi	s tru	ıth table i	s th	e truth va	lue	of $p \vee \neg q$	\leftrightarrow	$\neg p \lor q$
		0	□ 1	\boxtimes	2		3		4		5
d.	$p \lor$	$\neg q \leftrightarrow \neg p$	$p \lor q$ is a tau	tolo	gy.						
		True				\boxtimes	False				

Exercise 8 (3%)

Which rule of inference is used in the following argument:

"If it is Valdemar's day then there are flags on the buses. It is Valdemar's day. Therefore, there are flags on the buses."

- \Box Conjunction
- \Box Modus tollens
- \boxtimes Modus ponens
- □ Universal generalization

Exercise 9 (4%)

Consider the following set of integers

 $S = \{x \mid 0 \leq x < 280 \land x \equiv 3 \pmod{7} \land x \equiv 4 \pmod{8}\}.$

How many integers are there in S?

 $\Box 0 \qquad \Box 1 \qquad \Box 2 \qquad \boxtimes 5 \qquad \Box 10 \qquad \Box 280$

Exercise 10 (5%)

Let $(x - y)^5 = ax^5 + bx^4y + cx^3y^2 + dx^2y^3 + exy^4 + fy^5$, where *a*, *b*, *c*, *d*, *e*, *f* are integers.

- a. One has that b = e
 - \Box YES \boxtimes NO
- b. One has that *d* is equal to

|--|

Let $(3x + 2y)^3 = gx^3 + hx^2y + ixy^2 + jy^3$, where g, h, i, j are integers.

c. One has that *h* is equal to

 $\Box \ 6 \qquad \Box \ 18 \qquad \Box \ 27 \qquad \Box \ 36 \qquad \boxtimes \ 54 \qquad \Box \ 81$

Exercise 11 (7%)

Let $A = \{1, 2, 3, 4, 5\}$ be a set. Consider the following two relations on A $S = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4)\}$ $R = \{(2, 1), (2, 3), (4, 1), (4, 3), (4, 4), (4, 5), (5, 1)\}$

□ False

Answer the following true/false exercises:

a.	R is	transitive
	\boxtimes	True
b.	R is	reflexive

- □ True
 C. S is an equivalence relation
 □ True
 □ False
 True
 False
 True
 False
- f. (3,5) is in the composed relation $R \circ S$ \square True \square False
- g. (3,5) is in the composed relation $S \circ R$

Exercise 12 (7%)

\Box 0	\Box 1	□ 2	□ 3	\Box 4	□ 5
\Box 6		\boxtimes 8	□ 9	\Box 10	

Exercise 13 (9%)

Let $f(x) = (x \log x + 5x)(x^2 + 3x - 4)$, for x > 0. Answer the following 6 true/false exercises.

 $(111 \cdot 11113 + 1111115) \mod 11$ is equal to

a. f(x) is $O(x^3)$ □ True ⊠ False b. f(x) is $O(x^4)$ 🛛 True □ False c. f(x) is $O(x^3 \log x)$ ⊠ True □ False d. f(x) is $\Theta(x^3 \log x)$ 🛛 True □ False e. f(x) is $\Omega(x^3)$ ⊠ True □ False f. f(x) is $O(x^2 \log x)$ □ True ⊠ False

Exercise 14 (6%)

Let $f(x) = 3x^3 + 2x + 4$. One has that f(x) is $O(x^3)$.

- a. (C,k) = (10,0) can be used as witnesses to show that f(x) is $O(x^3)$. \Box True \boxtimes False
- b. (C, k) = (6, 1) can be used as witnesses to show that f(x) is $O(x^3)$. \Box True \boxtimes False
- c. (C, k) = (9, 1) can be used as witnesses to show that f(x) is $O(x^3)$. \boxtimes True \square False
- d. (C,k) = (12,1) can be used as witnesses to show that f(x) is $O(x^3)$.
 - \boxtimes True \Box False
- e. (C,k) = (3,2) can be used as witnesses to show that f(x) is $O(x^3)$.
- f. (C,k) = (5,2) can be used as witnesses to show that f(x) is $O(x^3)$.
 - 🛛 True

□ False

Figur 1: The graph *G* considered in Exercises 16 and 17.

Exercise 15 (6%)

Let $A = \{\emptyset, 1, 2, 3, 4\}$ and $B = \{\{\emptyset\}, 2, 4, 6\}$ be sets.

1.	1. What is the cardinality of $A \cap B$?										
	⊠ 2	□ 3	\Box 4	□ 5	5		6			7	
2.	What is the	e cardinalit	ty of $A \cup B$?							
	□ 2	□ 3	\Box 4	\Box 5	5		6		\boxtimes	7	
3. What is the cardinality of $A \times B$?											
	□ 12	□ 15	□ 16		\boxtimes	20			25		□ 30
4.	4. Which one of the following is an element of $A \times B$?										
	$\Box \{\emptyset, \emptyset\}$	}] (Ø,Ø)		\boxtimes	(Ø, {	Ø})			$(\{\emptyset\}, 6)$

Page 10 of 12

Exercise 16 (6%)

Consider the graph *G* in Figure 1. Answer the following true/false questions.

a.	G is	a simple graph.		
	\boxtimes	True		False
b.	G is	connected.		
	\boxtimes	True		False
c.	G h	as an Euler circuit.		
	\boxtimes	True		False
d.	G h	as a Hamilton circuit.		
		True	\boxtimes	False
e.	G h	as a Hamilton path.		
	\boxtimes	True		False

Page 11 of 12

Exercise 17 (6%)

Consider again the graph *G* in Figure 1.

a.	What is degr	ree of the ver	tex v			
	□ 1	□ 2	□ 3	\boxtimes 4	□ 5	□ 6
b.	What is the l	argest numb	er of vertices	in a comple	te subgraph	of G
	□ 1	□ 2	□ 3	\boxtimes 4	□ 5	□ 6
c.	What is the l	ength of a sh	ortest <i>simple</i>	circuit of G		
	□ 1	□ 2	⊠ 3	\Box 4	□ 5	□ 6
d.	What is the i	number of ed	lges in a spar	nning tree of	G	
	\Box 0	\Box 1	□ 6	⊠ 7		□ 14