Exam in Discrete Mathematics

First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design

June 4th, 2018, 9.00-13.00

This exam consists of 11 numbered pages with 14 problems. All the problems are "multiple choice" problems. The answers must be given on these sheets.
It is allowed to use books, notes, photocopies etc. It is not allowed to use any electronic devices such as pocket calculators, mobile phones or computers.

The listed percentages specify by which weight the individual problems influence the total examination.

Remember to write your full name (including middle names) together with your student number below.

NAME:

STUDENT NUMBER:

There is only one correct answer to each question.

Problem 1 (6\%)

$P(x, y)$ means " $x \leq y$ ", where the domain for x and y is the set of nonnegative integers. What are the truth values of the following statements?

1. $\forall n P(0, n)$True
False
2. $\forall x \exists y P(x, y)$
3. $\exists y \forall x P(x, y)$True
FalseTrue
False

Problem 2 (8%)

Determine whether each of the following statements is true or false.

1. If A and B are sets and $A \subseteq B$ then $|A| \leq|B|$.
\square TRUE
FALSE
2. If A and B are sets, A is uncountable, and $A \subseteq B$ then B is countable.
\square TRUE
FALSE
3. If A and B are sets with $|A|=|B|$ then $|\mathcal{P}(A)|=|\mathcal{P}(B)|$.
\square TRUE
FALSE
4. If A is an infinite set, then it contains a countably infinite subset.
\square TRUE

Problem 3 (8%)

Determine whether each of the following theorems is true or false. Assume that $a, b, c, m \in \mathbb{Z}$ with $m>1$

1. If $a \equiv b(\bmod m)$ and $a \equiv c(\bmod m)$ then $a \equiv b+c(\bmod m)$.\square FALSE
2. If $a \equiv b(\bmod m)$ then $2 a \equiv 2 b(\bmod m)$.TRUE
FALSE
3. If $a \equiv b(\bmod m)$ then $a \equiv b(\bmod 2 m)$.

TRUE

FALSE

4. If $a \equiv b\left(\bmod m^{2}\right)$ then $a \equiv b(\bmod m)$.
\square TRUE
FALSE

Problem 4 (9 \%)
Let $f(x)=\left(x!+2^{x}\right)\left(x^{3}+2 \log x\right)$, for $x>0$. Answer the following true/false problems.

1. $f(x)$ is $O\left(2^{x} x^{3}\right)$	\square True	\square False
2. $f(x)$ is $O\left(x!x^{3}\right)$	\square True	\square False
3. $f(x)$ is $O(\log x!)$	\square True	\square False
4. $f(x)$ is $\Omega\left(2^{x} x^{3}\right)$	\square True	\square False
5. $f(x)$ is $\Omega\left(x!x^{3}\right)$	\square True	\square False
6. $f(x)$ is $\Omega(\log x!)$	\square True	\square False
7. $f(x)$ is $\Theta\left(2^{x} x^{3}\right)$	\square True	\square False
8. $f(x)$ is $\Theta\left(x!x^{3}\right)$	\square True	\square False
9. $f(x)$ is $\Theta(\log x!)$	\square True	\square False

Problem 5 (8 \%)

1. What is the value of $9^{45} \bmod 23$?
7 \square
21
2\square4
$\square 3$
2. What is $\operatorname{gcd}\left(2^{89}, 2^{346}\right)$?
$\square 2^{3}$
$\square 2$
$\square 2^{89}$$3^{9}$4 $\square 2^{346}$ 6

Problem 6 (5 \%)

Consider the following recursive algorithm:
procedure $\operatorname{power}(n$: nonnegative integer)
if $n=0$ then $\operatorname{power}(n):=3$
else $\operatorname{power}(n):=\operatorname{power}(n-1) \cdot \operatorname{power}(n-1)$
return power (n)
Which one can be calculated using this recursive algorithm?
$\square 2^{n} \cdot 3$
$\square 3^{2 n}$
$\square 3^{2^{n}}$
$\square 3 n$
$\square 3^{n} \cdot 2^{n-1}$

Problem 7 (6 \%)

We consider the following moves of a particle in the $x y$ plane

$$
\begin{aligned}
& R:(x, y) \rightarrow(x+1, y) \text { (one unit right) } \\
& U:(x, y) \rightarrow(x, y+1) \text { (one unit up) ? }
\end{aligned}
$$

In how many ways can the particle move from the origin to the point $(8,5)$?
$\square \mathrm{P}(8,5)$$\mathrm{C}(8,5)$
$\square \mathrm{C}(13,8)$
$\square \mathrm{P}(13,5)$
$\square \mathrm{P}(13,8)$

What is the binomial expansion of $\left(x-\frac{3}{x}\right)^{5}$?
$\square x^{5}+15 x^{3}+90 x+\frac{270}{x}+\frac{405}{x^{3}}+\frac{243}{x^{5}}$
$\square x^{5}+15 x^{3}+90 x^{2}+270 x+405$
$\square x^{5}-5 x^{3}+15 x-\frac{45}{x}+\frac{45}{x^{3}}-\frac{24}{x^{5}}$
$\square x^{5}-15 x^{3}+90 x^{2}-270 x+405$
$\square x^{5}-15 x^{3}+90 x-\frac{270}{x}+\frac{405}{x^{3}}-\frac{243}{x^{5}}$

Problem 9 (8%)

1. What is a recurrence relation for the number of bit strings of length n that do not contain 3 consecutive 0's?
$\square a_{n}=2 a_{n-1}+a_{n-2}$ for $n \geq 3$
$\square a_{n}=5 a_{n-1}-a_{n-3}$ for $n \geq 4$
$\square a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$ for $n \geq 4$
$\square a_{n}=2 a_{n-1}+a_{n-2}+a_{n-3}$ for $n \geq 4$
$\square a_{n}=2 a_{n-1}+a_{n-2}$ for $n \geq 3$
2. What are the initial conditions?
$\square a_{1}=2, a_{2}=4, a_{3}=7$
$\square a_{1}=1, a_{2}=3, a_{3}=5$
$\square a_{1}=2, a_{2}=4, a_{3}=6$
$a_{1}=2, a_{2}=3, a_{3}=7$
$\square a_{1}=1, a_{2}=4, a_{3}=5$

Problem 10 (7\%)

Let $P(n)$ be the following statement

$$
\sum_{k=0}^{n} 3^{k}=\frac{3^{n+1}-1}{2}
$$

We want to prove by induction that $P(n)$ is true for all $n \geq 0$.

1. What is the correct basis step of the induction proof?Prove that $P(1)$ is true
\square Prove that $P(2)$ is true
\square Prove that $P(0)$ is true
\square Prove that $P(n)$ is true, for all $n \geq 1$
2. Which one of the following is a correct outline of the inductive step?Let $i \geq-1$ and assume that $P(i)$ is true. By the induction hypothesis $\sum_{k=0}^{i} \overline{3^{k}}=\frac{3^{i+1}-1}{2}$. Use this to prove $P(i+2)$.
\square Let $i \geq 0$ and assume that $P(i)$ is true. By the induction hypothesis $\sum_{k=0}^{i} 3^{k}=\frac{3^{i+1}-1}{2}$. Use this to prove $P(i+1)$.Let $i=0$ and assume that $P(i)$ is true. By the induction hypothesis $\sum_{k=0}^{i} 3^{k}=\frac{3^{i+1}-1}{2}$. Use this to prove $P(i)$.
\square Let $i \geq 0$ and assume that $P(i)$ is true. By the induction hypothesis $\sum_{k=0}^{i} 3^{k}=\frac{3^{i+1}-1}{2}$. Use this to prove $P(i+2)$.
\square Let $i \geq 2$ and assume that $P(i)$ is true. By the induction hypothesis $\sum_{k=0}^{i} 3^{k}=\frac{3^{i+1}-1}{2}$. Use this to prove $P(i+1)$.

Problem 11 (9 \%)

Let \mathcal{R} be the relation on the set $A=\{1,2,3,4\}$ defined by

$$
\mathcal{R}=\{(i, j) \mid 2 \text { divides }(i-j)\}
$$

1. What is the matrix that represents the relation \mathcal{R} ?

$$
\square\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \quad \square\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \quad \square\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

2. Answer the following true/false problems.

\mathcal{R} is reflexive	\square True	\square False
\mathcal{R} is symmetric	\square True	\square False
\mathcal{R} is antisymmetric	\square True	\square False
\mathcal{R} is transitive	\square True	\square False
\mathcal{R} is an equivalence relation	\square True	\square False

3. What is the matrix that represents the relation \mathcal{R}^{2} ?
$\square\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right) \quad \square\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right) \quad \square\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
a
${ }^{d}$
e

Figure 1: The graph G, considered in Problems 12, 13 and 14.

Problem 12 (8\%)

In this problem we use Dijkstra's algorithm (see Figure 2 on page 11) on the graph G in Figure 1.

1. What is the length of the shortest path from a to g (found by Dijkstra's algorithm)?$7 \quad \square 8$
9 10
1112
13

- 14

2. In what order are vertices added to the set S ?

$$
\left\{\begin{array}{l}
a, c, d, e, g \\
a, b, c, f, d, e, g \\
a, b, c, d, e, f, g \\
a, e, b, f, g \\
a, c, b, d, e, f, g \\
a, e, f, b, c, g \\
a, e, c, d, e, g
\end{array}\right.
$$

Problem 13 (5\%)

What is the weight of a minimum spanning tree of the graph G in Figure 1.
$\square 14$
15
$\square 16$
$\square 17$
\square 12
$\square 19$
$\square 10$
13

Problem 14 (7 \%)

In this problem G is the graph in Figure 1. (The edge weights of G are not considered in this problem.)

1. Answer the following true/false problems.

G has an Euler circuit	\square True	\square False
G has an Euler path	\square True	\square False
G has a Hamilton circuit	\square True	\square False
G has a Hamilton path	\square True	\square False

2. What is the length of a shortest simple circuit of G ?
$\square 1$
$\square 2$345
6
7
$\square 8$
procedure $\operatorname{Dijkstra}(G$: weighted connected simple graph, with all weights positive)
$\left\{G\right.$ has vertices $a=v_{0}, v_{1}, \ldots, v_{n}=z$ and lengths $w\left(v_{i}, v_{j}\right)$
where $w\left(v_{i}, v_{j}\right)=\infty$ if $\left\{v_{i}, v_{j}\right\}$ is not an edge in $\left.G\right\}$
for $i:=1$ to n
$L\left(v_{i}\right):=\infty$
$L(a):=0$
$S:=\emptyset$
\{the labels are now initialized so that the label of a is 0 and all other labels are ∞, and S is the empty set\}
while $z \notin S$
$u:=$ a vertex not in S with $L(u)$ minimal
$S:=S \cup\{u\}$
for all vertices v not in S
if $L(u)+w(u, v)<L(v)$ then $L(v):=L(u)+w(u, v)$ \{this adds a vertex to S with minimal label and updates the labels of vertices not in $S\}$
return $L(z)\{L(z)=$ length of a shortest path from a to $z\}$
Figure 2:
