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1 Introduction

These lecture notes give a very short introduction to polynomials with real and complex coef-
ficients.

2 Definitions and Some Properties

Polynomials with complex coefficients are functions of a complex variable z of a particularly
simple form. Examples are

z2 + (8 + i)z + 4, z16 − 64, (7− 8i)z3 − (4 + 4i)z2 −
√

17, 232, and z − 1. (2.1)

The formal definition is as follows.

Definition 2.1. A polynomial with complex coefficients is a function of the form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, (2.2)

where aj ∈ C, j = 0, 1, . . . , n, and z is a complex variable. If an 6= 0, then n is the degree
of p(z), which is written as deg(p(z)) = n. In general, the degree of a polynomial p(z) is the
largest k such that ak 6= 0. The polynomial with all coefficients equal to zero is called the zero
polynomial. The degree of the zero polynomial is defined to be zero1.

Looking at the examples in (2.1), we see that the degree of the first polynomial is 2, the
second one has degree 16, etc.

A number of operations can be performed with polynomials. Given a polynomial p(z) and
a complex number c, the polynomial c p(z) is obtained by multiplying each coefficient in p(z)
by c. Given two polynomials p(z) and q(z), their sum is defined by adding the coefficients of
corresponding power. Some examples will illustrate these definitions.

1This choice requires some care in certain computations, which however will not be needed there. In most
cases one prefers to assign the degree −∞ to the zero polynomial, but that also requires some care in compu-
tations
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Given p(z) = z3 − iz + 1 + 7i and c = 1− i, we have

c p(z) = (1− i)(z3 − iz + 1 + 7i) = (1− i)z3 + (1− i)(−i)z + (1− i)(1 + 7i)

= (1− i)z3 + (−1− i)z + 8 + 6i.

Let q(z) = −z3 + 4z2 − 8z − 8. Then the polynomial p(z) + q(z) is given by

p(z) + q(z) = (z3 − iz + 1 + 7i) + (−z3 + 4z2 − 8z − 8)

= (1 + (−1))z3 + (0 + 4)z2 + (−i+ (−1− i))z + (1 + 7i+ (−8))

= 4z2 + (−1− 2i)z − 7 + 7i.

Note that since the coefficient to the term z2 in p(z) is zero, it is not written explicitly in
the usual expression for p(z), but we have included it in the computation above to clarify the
principle of addition.

Polynomials can be multiplied. Given p1(z) = z2 − i and q1(z) = z3 − z, the product is
obtained by multiplying out and collecting coefficients to the same power of z. We have

p1(z)q1(z) = (z2 − i)(z3 − z) = z2(z3 − z)− i(z3 − z)

= z5 − z3 − iz3 + iz = z5 + (−1− i)z3 + iz.

In general, we cannot divide polynomials and obtain a quotient, which is again a polynomial.
But division with remainder can be carried out. The method is the same as used for integers.
Given the integers m = 9 and n = 4, division of m by n with remainder means that we can write
m = kn + r, where k is an integer, and the remainder r is an integer that satisfies 0 ≤ r < n.
Thus the result in the example is 9 = 2 ·4+1. The assumption needed to carry out this division
with remainder is that m ≥ n.

Given two polynomials p1(z) and p2(z), such that deg(p1) ≥ deg(p2) > 0, division with
remainder means to write

p1(z) = q(z)p2(z) + r(z).

Here q(z) is a polynomial and r(z) is a polynomial satisfying 0 ≤ deg(r) < deg(p2).
Here are some examples to illustrate this procedure. First let us take p1(z) = z4−z3 +z2−z

and p2(z) = z2 − 1. Then the result is

z4 − z3 + z2 − z = (z2 − z + 2)(z2 − 1) + (−2z + 2),

such that q(z) = z2 − z + 2 and r(z) = −2z + 2.
For the next example we take p1(z) = 4z4 − 64 and p2(z) = z2 − 4. In this case

4z4 − 64 = (4z2 + 16)(z2 − 4) + 0.

Thus in this case the remainder is zero.
There are various ways of doing these divisions with remainder by hand. At least one of

the methods will be illustrated during the lectures. It is also possible to use Maple to carry
out the computation of the quotient and the remainder. The functions are called quo and rem,
respectively. See the Maple documentation for their use.

3 Roots of Polynomials

We introduce the following definition.

Definition 3.1. Let p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial of degree n ≥ 1.
A complex number z0 ∈ C is called a root of p(z), if p(z0) = 0.
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Thus a root of the polynomial p(z) is just a different name for a zero of p(z) as a function.
The reason for using a special name is that roots of a polynomial have many nice properties
not shared by zeroes of general functions.

We have the following important result.

Proposition 3.2. Let p(z) be a polynomial of degree n ≥ 1. Then z0 ∈ C is a root of p(z), if
and only if there exists a polynomial q(z) (of degree n− 1), such that

p(z) = q(z)(z − z0). (3.1)

Proof. If (3.1) holds, then it is obvious that p(z0) = 0. Conversely, assume that z0 is a root of
p(z). Then we can use the division with remainder described in the previous section to write
p(z) = q(z)(z− z0) + c, where c is the remainder, a polynomial of degree 0. Now if we use that
p(z0) = 0, it follows that c = 0 and (3.1) holds.

Definition 3.3. Let p(z) be a polynomial of degree n ≥ 1. Assume that z0 is a root of p(z).
We define the multiplicity of the root z0 to be the integer m that satisfies

p(z) = q(z)(z − z0)
m and q(z0) 6= 0. (3.2)

The most important result about polynomials is the following result, which is called the
Fundamental Theorem of Algebra. This theorem is not easy to prove, so we will state it
without proof.

Theorem 3.4 (Fundamental Theorem of Algebra). Let p(z) be a polynomial of degree n ≥ 1.
Then p(z) always has a root z0 ∈ C.

It is important to note that this theorem states that there always exists a root in any
polynomial of degree greater than or equal to one. But the theorem does not give a method or
an algorithm to find a root. Actually there is no general algorithm to find the exact roots of a
polynomial of degree five or higher.

One can apply the Fundamental Theorem of Algebra repeatedly to obtain the following
result.

Corollary 3.5. Let p(z) be a polynomial of degree n ≥ 1. Then there exist complex numbers
z1, z2, . . . , zn, such that

p(z) = an(z − z1)(z − z2) · · · (z − zn). (3.3)

Proof. We use the Fundamental Theorem of Algebra to write p(z) = q1(z)(z − z1) for some
complex number z1. Now q1(z) is a polynomial of degree n− 1. If n− 1 > 0, we can apply the
Fundamental Theorem of Algebra once more to write q1(z) = q2(z)(z − z2) for some complex
number z2. Repeating this argument the result follows.

We can use Definition 3.3 and Corollary 3.5 to obtain the following result, by grouping
together repeated roots in (3.3).

Corollary 3.6. Let p(z) be a polynomial of degree n ≥ 1. Then there exist complex numbers
ζ1, ζ2, · · · , ζk, ζj 6= ζj′, j 6= j′, and integers m1,m2, · · · ,mk, satisfying 1 ≤ mj ≤ n, j =
1, 2, . . . , k and m1 +m2 + · · ·+mk = n, such that

p(z) = an(z − ζ1)m1(z − ζ2)m2 · · · (z − ζk)mk . (3.4)

We note that mj is the multiplicity of the root ζj.
We conclude this section with a few examples of factorizations. We consider first p(z) =

z4 + 2z2 + 1. We have p(z) = (z − i)2(z + i)2. Thus this polynomial has two different complex
roots, +i and −i, and each of these roots has multiplicity 2.

Next we take p(z) = 6 z3 − 6i z2 + 12 z − 6 z2 + 6i z − 12. In this case one can show that
p(z) = 6(z − 1)(z + i)(z − 2i). Thus the roots are 1, −i, and 2i, and all three roots have
multiplicity one.
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4 Roots in Polynomials of Degree One and Two

Let us start with the easy case of a polynomial of degree one, p(z) = a1z + a0, a1 6= 0. The
root is given by z1 = −a0/a1 and has multiplicity one.

Next we look at a special type of polynomial of degree two, p(z) = z2 − a. We have the
following result.

Proposition 4.1. Let p(z) = z2 − a, where a = α + iβ, α, β ∈ R. Let

sgn(β) =

{
1, if β ≥ 0,

−1, if β < 0.
(4.1)

Let r = |a| =
√
α2 + β2. Then the two roots of p(z) = z2 − a are given by

z1 =

√
r + α

2
+ i sgn(β)

√
r − α

2
, (4.2)

z2 = −
√
r + α

2
− i sgn(β)

√
r − α

2
. (4.3)

Proof. The proof is very simple. One needs to verify that (z1)
2 = a and (z2)

2 = a. Let us verify
the first equality. We have

(z1)
2 =

(√
r + α

2
+ i sgn(β)

√
r − α

2

)2

= 1
2
(r + α)− 1

2
(r − α) + 2i sgn(β)

√
1
4
(r + α)(r − α)

= α + i sgn(β)
√
β2 = α + i sgn(β)|β|

= α + iβ = a.

In this computation we have used that (r + α)(r − α) = r2 − α2 = (α2 + β2) − α2 = β2 and
β = sgn(β)|β|.

Based on this result we can now find the roots in a general polynomial of degree two. We
have the following result.

Proposition 4.2. Let p(z) = az2 + bz+ c, where a, b, c ∈ C with a 6= 0. Let D = b2− 4ac, and
let w be one of the solutions to z2 −D = 0. Then the roots of p(z) are given by

−b± w
2a

. (4.4)

D is called the discriminant of the polynomial.

Proof. Since a 6= 0, we can rewrite the polynomial p(z) as follows.

p(z) = az2 + bz + c = a
(
z2 +

b

a
z +

c

a

)
= a
((
z +

b

2a

)2 − b2

4a2
+
c

a

)
= a
((
z +

b

2a

)2 − D

4a2

)
= a
((
z +

b

2a

)2 − w2

4a2

)
= a
(
z +

b

2a
− w

2a

)(
z +

b

2a
+
w

2a

)
,

which shows that the two roots are given by (4.4).
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We now give a few examples of the use of these two results. First we solve the equation
z2 = 2 − 2i. Thus we have α = 2, β = −2, r =

√
22 + (−2)2 =

√
8 = 2

√
2 and sgn(β) = −1.

Thus

z1 =

√
1
2
(2
√

2 + 2) + i(−1)

√
1
2
(2
√

2 + 2) =

√√
2 + 1− i

√√
2− 1.

The other root is of course z2 = −z1.
Next we find the roots of the polynomial 2 z2−10i z−12. First we compute the discriminant:

D = (−10i)2 − 4 · 2 · (−12) = −4.

One of the solutions to w2 = −4 is w = 2i. Thus the roots are

−(−10i)± 2i

2 · 2
=

{
3i,

2i.

Remark 4.3. There is an easy way to test whether one has found the correct roots of a
polynomial of degree two. Assume for simplicity that a = 1, such that we have the roots z1

and z2 of the polynomial z2 + bz + c. These two roots must then satisfy

z1 + z2 = −b and z1z2 = c. (4.5)

The verification of these results is left to the reader.

5 Roots of zm − a
In this section we review the results from [1] concerning roots of the polynomial zm − a, or
equivalently, solutions to the equation zm = a, where m ≥ 1 is an integer. The method is to
write a in polar form

a = reiθ, r = |a|, θ = Arg a.

The m different solutions are then given by

zk = r1/m
(
cos(

θ + 2πk

m
) + i sin(

θ + 2πk

m
)
)
, k = 0, 1, . . . ,m− 1. (5.1)

Examples and further comments can be found in [1].

6 Factorization of Polynomials

The results in Corollaries 3.5 and 3.6 show that once we know the roots in a polynomial, then
we can factor it. Even for polynomials with real coefficients we may get non-real numbers in
the factorization, as in

4 z2 + 16 = 4(z − 2i)(z + 2i).

However, if we are satisfied with a factorization in factors that are of degree one or two, then
it can be achieved with real coefficients only. Before we state this result, we need the following
important result.

Proposition 6.1. Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with real coefficients aj ∈ R,
j = 0, 1, 2, . . . , n. If z0 is a root of p(z), then the conjugate z0 is also a root of p(z).
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Proof. We have p(z0) = anz
n
0 + an−1z

n−1
0 + · · ·+ a1z0 + a0 = 0. Taking the complex conjugate

we get, using the facts that the conjugate of a sum is the sum of the sum of the conjugates,
and the conjugate of a product is the product of the conjugate of each factor,

p(z0) = anzn0 + an−1z
n−1
0 + · · ·+ a1z0 + a0

= anzn0 + an−1z
n−1
0 + · · ·+ a1z0 + a0

= anz0
n + an−1z0

n−1 + · · ·+ a1z0 + a0

= p(z0).

In the computation above we have used that the coefficients aj are real, such that aj = aj,
j = 0, 1, . . . , n. Thus p(z0) = 0 implies p(z0) = 0.

Proposition 6.2. Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with real coefficients aj ∈ R,
j = 0, 1, 2, . . . , n. Let ξj, j = 1, 2, . . . , J denote the distinct real roots of p(z), and let ζk,
k = 1, 2, . . . , K be complex numbers with Im ζk 6= 0, such that ζk, ζk are the remaining distinct
roots of p(z), k = 1, . . . , K. Write ζk = αk + iβk with αk and βk real. Then we have

p(z) = an(z − ξ1)n1 · · · (z − ξJ)nJ ((z − α1)
2 + β2

1)m1 · · · ((z − αK)2 + β2
K)mK . (6.1)

Here nj is the multiplicity of the root ξj, j = 1, . . . , J and mk is the multiplicity of the root ζk,
k = 1, . . . , K. We have J + 2K = n.

Proof. The result is a consequence of Corollary 3.6 and Proposition 6.1. For the real roots this
is immediate. For the pairs of complex conjugate roots we use that

(z − ζk)(z − ζk) = (z − αk − iβk)(z − αk + iβk) = (z − αk)2 + β2
k .

Let us give some examples. First we consider p(z) = z4 − 1. Here we can use the result
from Section 5 to find the roots. The roots are z1 = 1, z2 = −1, z3 = i, and z4 = −i. Thus we
have two real roots and one pair of complex conjugate roots. Therefore we have

p(z) = (z − 1)(z + 1)(z − i)(z + i) = (z − 1)(z + 1)(z2 + 1).

Next let us look at p1(z) = z8 − 2z4 + 1. If we note that p1(z) = (z4 − 1)2, we can use the
previous factorization to get

p1(z) = (z − 1)2(z + 1)2(z − i)2(z + i)2 = (z − 1)2(z + 1)2(z2 + 1)2.

Thus the roots are the same, but their multiplicities are different.
We now give a somewhat more complicated example. We let

p2(z) = z5 − 3 z4 + 8 z3 − 14 z2 + 16 z − 8.

The roots of this polynomial are

z1 = 1, z2 = 1 + i, z3 = 1− i, z4 = 2i, z5 = −2i.

Thus there is one real root and two pairs of complex conjugate roots. The factorization in
Proposition 6.2 becomes

p2(z) = (z − 1)((z − 1)2 + 1)(z2 + 4) = (z − 1)(z2 − 2z + 2)(z2 + 4).

Remark 6.3. The result in Remark 4.3 can be generalized to an arbitrary polynomial. Again
to simplify the statement we assume that the coefficient to the highest power is equal to one.
Thus we consider a polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

with roots (repeated with multiplicity) z1, z2, . . . , zn. These roots then satisfy

z1 + z2 + · · ·+ zn = −an−1 and z1z2 · · · zn = (−1)na0. (6.2)
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